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Abstract

Industrial robots have been substituting or complementing workers in various oc-

cupations. I match unique data on imported robot prices with the occupational task

information to measure the cost of using robots by occupation and show that a 10%

reduction in the cost is associated with a 1.2% reduction in wages for US production

and transportation occupations, suggesting strong substitutability in these occupa-

tions. I structurally estimate a higher elasticity of substitution between robots and

workers than that of general capital goods in production occupations, which implies

that industrial robot adoption significantly affects the US wage polarization.
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1 Introduction

Industrial robots have been changing factory production rapidly.1 In the last three decades,

the size of the global robot market has grown by 12% per year (IFR, 2021). Robotization

has heterogeneous effects on workers across occupations, raising concern about its distri-

butional effects. Policymakers have proposed various countermeasures to the potential

harms of robotization, such as introducing taxation on robot adoption.2 Motivated by

these observations, emerging literature has estimated the effects of robot penetration on

employment (e.g., Acemoglu and Restrepo 2020) and the potential impact of robot taxes

(e.g., Humlum 2019). However, the effects of robotization also depend on under-explored

factors such as the substitutability of robots for workers in each occupation.

In this paper, I study the effect of increased availability of robots on the wage in-

equality between occupations and welfare in the US. Using a new dataset on the cost of

adopting Japanese robots, I show that the robot cost reduction affects the US wage and

employment adversely in a subset of routine occupations. This suggests substitutabil-

ity between robots and workers within an occupation, unlike the previous research that

reveals the substitutability between occupations. Building on this fact, I develop an equi-

librium model in which robots substitute labor within each occupation. I then construct

a model-implied optimal instrumental variable and estimate the elasticity of substitution

(EoS) between robots and workers that can be heterogeneous across occupations. Finally,

I perform counterfactual exercises to study the distributional effect of robotization in the

US since 1990, as well as the welfare impact of robot taxes.

A unique feature of my dataset is the robot price measure for each 4-digit occupa-

1Throughout the paper, industrial robots (or robots) are defined as multiple-axes manipulators and are
measured by the number of such manipulators, or robot arms, following a standard in the literature. A more
formal definition given by ISO is provided in Appendix B.1. Such a definition implies that any automation
equipment that does not have multiple axes is out of the scope of the paper, even though some of them are
often called “robots” (e.g., Roomba, an autonomous home vacuum cleaner made by iRobot Corporation).

2The European Parliament proposed a robot tax on robot owners in 2015, although it eventually rejected
the proposal (Delvaux et al. 2016). South Korea revised the corporate tax laws that downsize the “Tax
Credit for Investment in Facilities for Productivity Enhancement” for enterprises investing in automation
equipment (MOEF 2018).
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tion in which robots replace labor. To obtain such a dataset, I use the information about

the shipment of Japanese robots, which comprises about one-third of the world’s robot

supply, from the Japan Robot Association (JARA). JARA’s key feature is that the data are

disaggregated at the level of robot application or the specified task that robots perform.

I combine JARA data with O*NET Code Connector’s match score to get an occupation-

level robot price measure. Finally, I extract a robot cost shock that controls for the demand

factors using leave-one-out regression, which I call the Japan robot shock.

The dataset reveals two stylized facts. First, from 1992-2007, there was a sizable and

heterogeneous reduction in the average cost of Japanese robots, ranging from about 0%

to 150% across occupations.3 Second, there is a negative relationship between the Japan

robot shock and the US wage growth, or a 1.2% decline in occupational wage growth per

year associated with a 10% decrease in the cost of using Japanese robots. This finding

is robust to controlling for other occupational demand shocks, such as the China trade

shock, and suggests that the relative demand for labor is responsive to the robot cost

reduction due to the strong substitutability of robots for labor.

However, the Japan robot shock measure may be affected by the robot quality change

instead of the change in the cost of robots, and thus the reduced-form relationship does

not reveal the elasticity of substitution parameters. To address this concern, I employ an

equilibrium model of robotics automation and quality changes. The production function

is characterized by the CES between robots and labor within each occupation, and thus

the EoS can vary across occupations. I show that this production function can be micro-

founded by the task-based framework à la Acemoglu and Autor (2011). This formulation

is useful for several reasons. Most importantly, it allows me to interpret the robot quality

change in terms of the change in the robot expenditure share parameter, which I call

as the automation shock. It also yield rich predictions about the role of robot capital

accumulation in real wage changes.4

3I focus on this sample period and omit data after the Great Recession since the aggregate data about
robots show a strikingly different trend than before, and capturing it is out of the scope of this paper.

4Furthermore, I incorporate the trade of robots following Armington (1969) to capture Japan’s sizable
robot export in my dataset. This large-open economy assumption implies that a robot tax would affect the
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To estimate the robot-labor EoS, I confront the identification challenge that the Japan

robot shock can be correlated with the unobserved automation shock, and these shocks

affect the labor market outcomes simultaneously. To overcome this challenge, I use the

model solution and obtain structural residuals of labor market outcomes, which controls

for the effect of the automation shock. Here, the structural residuals are remaining vari-

ations after controlling for the effects of automation shock that are backed out from my

CES production function. My identification assumption is that these structural residuals

are uncorrelated with the Japan robot shock. This assumption implies a moment condi-

tion, which not only provides me with consistent parameter estimates but also an optimal

instrumental variable to increase estimation precision.

Applying this estimation method, I find that the EoS between robots and workers is

around 2 when estimated with a restricted constant across occupations. This estimate

is higher than the typical values reported in the literature of the EoS between labor and

general capital like structure and equipment, highlighting one of the main differences

between robots and other capital goods. Moreover, the EoS estimates are heterogeneous

when allowed to vary across occupations. Specifically, for routine occupations that per-

form production and material moving, the point estimates are as high as around 3, reveal-

ing the special susceptibility of workers to robots in these occupations. These estimates

are identified from the strong relationship between a larger robot price drop and a lower

occupational wage growth rate in these occupations. By contrast, the estimates in the

other occupations are close to 1, indicating that robots and labor are neither substitutes

nor complements in the other occupations. I validate the estimated model by checking

that the predicted occupational US wage changes from 1990-2007 fit well with the ob-

served ones.

The large EoS between robots and workers in production and material moving occu-

pations implies that the robotization in the sample period significantly decreased relative

wage in these occupations. Moreover, the subsitution implies the increase in relative labor

world price of robots, allowing a country to potentially improve the welfare by manipulating the terms-of-
trade.

4



demand in occupations that are not directly affected. These mechanisms indicate that the

robotization shock slowed the relative wage growth of occupations in the middle deciles

since robotized occupations tend to be in the middle of the occupational wage distribu-

tion in 1990. Quantitatively, it explains a 6.4% increase in the 90th-50th percentile wage

ratio, a measure of wage inequality popularized by Goos and Manning (2007) and Autor,

Katz, and Kearney (2008). Robotization also explains a 0.2 percentage point increase in

the US real income, mostly accounted for by the rise in the producers’ profit due to the

accumulation of robots.

Finally, I examine the counterfactual effect of introducing a tax on robot purchases.

In my model, a robot tax could potentially increase the aggregate income of a country

through the change in world robot prices, or the terms of robot trade. By contrast, the

robot tax also disincentivizes the accumulation of robots in the steady state, potentially

reducing aggregate income. Quantitatively, the net positive effect by the terms-of-trade

effect quickly disappears in 2-3 years as the effect of robot distortion starts to dominate

the effect of robot price changes. As a result, the robot tax decreases the real income in

the long run. Therefore, this finding provides a caution to policy measures proposed to

slow down the adoption of industrial robots even when the country can strategically tap

into the opportunity of terms-of-trade manipulation.

This paper contributes to the literature on the economic impacts of industrial robots

by finding a sizable impact of robots on US wage polarization. The closest papers to

mine are Acemoglu and Restrepo (2020) and Humlum (2019). Acemoglu and Restrepo

(2020) establish that the US commuting zones that experienced a greater penetration of

robots in 1992-2007 saw lower growth in wages and employment.5 Humlum’s (2019)

contribution is to estimate a model of robot importers in a small-open country and an EoS

between occupations using firm-level data on robot adoption to find a positive real-wage

5Dauth et al. (2017) and Graetz and Michaels (2018) also use the industry-level aggregate data of robot
adoption to analyze its impact on labor markets. Galle and Lorentzen (forthcoming) studies the interaction
effects of trade and automation. Furthermore, Adachi, Kawaguchi, and Saito (forthcoming) also use the
JARA data to study the Japanese labor market implications of robots. By contrast, this paper studies the
US labor markets and explore robots’ impact on the US wage polarization by estimating the elasticity of
substitution between robots and workers.
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effect on average with significant heterogeneity across occupations.6 I complement these

studies by providing a method of estimating the within-occupation EoS between robots

and labor using data on occupation-level robot costs. The estimation result reveals the

heterogeneous substitutability of robots and workers in the US. I also consider large open

countries’ trade of robots, which introduces the terms-of-trade effect when considering

robot taxes.

An increasing number of studies pay attention to occupations to learn about the po-

tentially heterogeneous impacts of automation (Jäger, Moll, and Lerch 2016; Cheng 2018;

Dinlersoz and Wolf 2018). Among others, Jaimovich et al. (2020) construct a general equi-

librium model to study the effect of automation on the labor market of routine and non-

routine workers in a steady state. To this literature, I provide a matching method of

industrial robot applications and occupations, which produces the occupation-level data

of robot costs.

This paper is also related to the vast literature on estimating the EoS between capital

and labor, as robots are one type of capital goods (to name a few, Arrow et al. 1961;

Chirinko 2008; Oberfield and Raval 2014). Although the literature yields a set of estimates

with a wide range, the upper limit of the range appears to be around 1.5 (Karabarbounis

and Neiman 2014; Hubmer 2023). Therefore, my EoS estimates around 3 in production

and material-moving occupations are significantly higher than this upper limit. In this

sense, they highlight one of the main differences between robots and other capital goods:

special susceptibility of workers to robots across different occupations.

2 Data and Stylized Facts

To measure the cost of using robots, I use data from the Japan Robot Association, with

which I combine data from the O*NET Code Connector for matching robot application

6There is also a growing body of studies that use the firm- and establishment-level microdata to study
the impact on workers in Canada (Dixon, Hong, and Wu 2019), France (Acemoglu, Lelarge, and Restrepo
2020; Bonfiglioli et al. 2020), the Netherlands (Bessen et al. 2019), Spain (Koch, Manuylov, and Smolka
2019), and the US (Dinlersoz and Wolf 2018).
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codes to labor occupation codes at the 4-digit level. I then show stylized facts about robots

and workers at the occupation level that suggest strong substitutability between robots

and labor to motivate the model and estimation. Throughout the paper, I set the sample

period to 1992-2007 (or 1990-2007 for the labor data) and write t0 ≡ 1992 and t1 ≡ 2007.

2.1 Data Sources on Industrial Robots

The robot measures are taken from the Japan Robot Association (JARA), a general in-

corporated association composed of Japanese robot-producing companies. In its Export

Statistics of Manipulators, Robots and Applied Systems by Country and Application,

JARA annually surveys major robot producers about the units and monetary values of

robots sold for each destination country and robot application. Robot application is de-

fined as the specified task that robots perform, which is discussed in detail in Section 2.2.

I use digitized JARA’s annual publication of the summary cross tables starting from 1978.

Japan has a significant robot innovator, producer, and exporter. For example, as of

2017, the US had imported 5 billion dollars worth of Japanese robots, which comprises

roughly one-third of the robots used in the US. Therefore, the cost reduction of Japanese

robots significantly affects robot adoption in the US and the world.7

I also use the Occupational Information Network OnLine (O*NET) Code Connector

to convert robot applications to labor occupations. The O*NET Code Connector is an

online database of occupations sponsored by the US Department of Labor, Employment,

and Training Administration, and provides an occupational search service. Using this

service, one can search any words and get occupations that are close to the search words.

Furthermore, the search algorithm provides a match score that shows the relevance of

each occupation to the search term.8 I use this match score to match robot applications

7In this paper, I use the cost reduction of Japanese robots as one of the sources of robotization shocks,
which will be clarified in the model section. Then I treat unobserved reductions of robot costs sourced from
other countries as independent from the evolution of Japanese robot costs, and discuss the plausibility of
this assumption in Appendix B.5 by comparing the JARA data and the data from the International Federa-
tion of Robotics (IFR), a widely-used data source of robots in the world. Furthermore, Appendix B.3 shows
the international robot flows, including Japan, the US, and the rest of the world.

8The match score is the result of the weighted search algorithm used by the O*NET Code Connector, which
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and labor occupations. The set of occupations consists of all of the 324 four-digit-level

occupations that exist throughout my sample period and pre-period, which is discussed

in detail in Appendix B.2.

2.2 Constructing the Dataset

I describe a novel measurement method of robot costs compared to the past literature that

only focuses on the quantity of robots.9

Matching Robot Applications and Labor Occupations. Robot applications and labor

occupations are close concepts, although there has not been formal concordance between

application and occupation codes. On the one hand, a robot application is a task to

which the robot is applied, and each task has different technological requirements for

robotics automation. On the other hand, an occupation also requires multiple types of

tasks. Therefore, a heterogeneous mix of tasks in each occupation generates a difference

in the ease of automation across occupations, implying the heterogeneous adoption level

of robots (Manyika et al. 2017). Appendix B.1 provides further descriptions of robot ap-

plications and labor occupations using examples.

Formally, let a denote robot application and o denote labor occupation. The JARA

data measure the quantity of robots sold and total monetary transaction values for each

application a. I write these as robot measures XR
a , a generic notation that can mean both

quantity and monetary values. Then, the goal is to convert an application-level robot

measure XR
a to an occupation-level measure XR

o .

First, I search occupations in the O*NET Code Connector by the title of robot applica-

tion a, and I web-scrape the match score moa between a and o. Next, I allocate XR
a to each

is the internal search algorithm developed and employed by O*NET since September 2005. Since then, the
O*NET has continually updated the algorithm and improved the quality of the search results. Morris (2019)
reports that the updated weighted search algorithm scored 95.9% based on the position and score of a best
4-digit occupation for a given query.

9While Graetz and Michaels (2018) provide data about robot prices from IFR, the price data is aggre-
gated but not distinguished by occupations. By contrast, I will use the variation at the occupation level to
estimate the substitutability between robots and workers.
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occupation o according to moa-weight by

XR
o = ∑

a
ωoaXR

a where ωoa ≡
moa

∑o′ mo′a
. (1)

Note that ∑o ωoaXR
a = XR

a since ∑o ωoa = 1, which is a desired property of allocation

that occupation-level robot values return to the application level when summed across

occupations. Robot trends based on the constructed occupation-level measures are shown

in Appendix A.1, and further details of matching are described in Appendix A.2.10

Remarks on recent literature that studies the task contents of recent technological de-

velopment follow. Webb (2019) provides a natural-language-processing method to match

technological advances (e.g., robots, software, and artificial intelligence) embodied in the

patent title and abstract to occupations. Furthermore, Montobbio et al. (2020) extend

this approach to analyzing full patent texts by applying the topic modeling method of

machine learning. My matching method between robot application and occupation com-

plements these studies by matching the data of robot quantities with lower data require-

ments, as I only observe the title of robot applications but not detailed descriptions as

those in patent texts.

The Japan Robot Shock. The matching method described above provides the robot

quantity qR
i,o,t and sales (pq)R

i,o,t in destination country i, occupation o, and year t. Us-

ing them, I construct the cost shocks to robot users in each occupation in the following

steps. First, I take the average export price pR
i,o,t ≡ (pq)R

i,o,t /qR
i,o,t.

11 Although one concern

when using price data is the simultaneity that demand shocks, not only cost shocks, drive

prices, my export price measure has less concern of this type than domestic robot prices.

10Although it is transparent to match applications and occupations in a completely automatic way in-
stead of using a researcher’s judgment, a concern about this matching method is that one has potentially
erroneous matching due to noise in the text description in the occupation dictionary. In order to mitigate
such a concern, I explore a manual hard-cut matching between applications and occupations, which is de-
scribed in greater detail in Appendix A.3. The regression table confirms that my qualitative results are
maintained.

11I have also computed the chain-weighted robot price index, which is commonly used when measuring
the capital good price. The results using this index are not qualitatively different from the main findings.
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Nonetheless, to mitigate the simultaneity concern further, I exclude the US’s robot import

prices from the sample. Here, the argument is close to the one in Hausman, Leonard,

and Zona (1994) and Nevo (2001), that the changes in demand shocks are uncorrelated

between the US and other countries, but the price variations are primarily driven by the

robot production costs in Japan. This leave-one-out idea is also used intensively in the

automation literature (e.g., Acemoglu and Restrepo 2020).12

Second, to further mitigate the concern about cross-country correlation in demand

shocks, I employ the data’s bilateral trade structure and control for the destination country-

specific demand factor. Formally, I fit the fixed-effect regression

ln
(

pR
i,o,t

)
− ln

(
pR

i,o,t0

)
= ψD

i,t + ψJ
o,t + εi,o,t, i , USA (2)

where t0 is the initial year, ψD
i,t is the destination-year fixed effect, ψJ

o,t is the occupation-

year fixed effect, and εi,o,t is the residual. This regression controls for any country-year

specific effect ψD
i,t, which includes country i’s demand shock or trade shock between Japan

and i that are constant across occupations. I use the remaining variation across occupa-

tions ψJ
o,t as a cost shock of robot adoption, and specifically define ψJ

o ≡ ψJ
o,t1

as the “Japan

robot shock.”

Another issue with the average price approach is that the average price includes the

component of robot quality upgrades. Namely, a rapid innovation in robotics technology

could entail both a quality upgrading that makes robots perform more tasks at a greater

efficiency as well as the cost saving of producing robots that perform the same task as

before. The inseparability of these two components makes it hard to compare prices over

time, which poses an identification threat. To work around this issue, I will use the general

equilibrium model to predict the labor market effects of quality upgrading in Section 3.

Other possible approaches and their limitations are discussed in Appendix B.4.

12A related but distinct concern is that since the US is a large economy, their demand shock may affect
robot prices in the international market, which at the same time drives the US labor demand. To address
this concern, I will perform the same exercise as in Section 2.3 using data from the small-open economy in
Appendix A.4.
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2.3 Stylized Facts

I convert the Japan robot shock data at the O*NET-SOC 4-digit occupation level to the

ones at the OCC2010 occupation level to match the labor market measures from the US

Census, American Community Survey (ACS), retrieved from the Integrated Public Use

Microdata Series (IPUMS) USA (Ruggles et al. 2018). These labor data are standard in

the literature, and their description is relegated to Appendix B.2. With all these data

combined, I show stylized facts about the Japan robot shock and its relation to the labor

market outcome in the US.

Fact 1: Trends of the Japan Robot Shock. Figure 1a plots the distribution (10th, 50th,

and 90th percentile) of the growth rates of the price of Japanese robots in the US each

year relative to the initial year. The figure shows two patterns: (i) the robot prices fol-

low an overall decreasing trend, with a median growth rate of -17% from 1992 to 2007,

or -1.1% annually, and (ii) there is significant heterogeneity in the rate of price decline

across occupations. Specifically, the 10th percentile occupation experienced -34% growth

(-2.8% per annum), while in the 90th percentile occupation, the price changed little in the

sample period. This price drop is consistent with the trend of decreasing prices of general

investment goods since 1980; Karabarbounis and Neiman (2014) report a 10% decrease

per decade.

Figure 1b shows the distribution of the long-run trend (1992-2007) for each occupation

group. The occupation groups are routine, service (or manual), and abstract following

Autor, Levy, and Murnane (2003). Routine is further divided into production, transporta-

tion, and others to reflect the rapid robot adoption in production and transportation oc-

cupations. The figure confirms a significant price variation across occupations, and that

variation is observed even within occupation groups. Perhaps surprisingly, the average

change of production robot prices is not as large as other robots but is slightly positive.

This indicates that the robotics technology change in production occupations is not re-

flected by the price decline but by the quality improvement, so the unit value rises. Fur-
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Figure 1: Distribution of the Cost of Robots

(a) US Robot Price by Occupations (b) Variation in the Japan Robot Shock

Note: The left panel shows the trend of prices of robots in the US by occupations, pR
USA,o,t. The bold and dark line shows the median

price in each year, and two thin and light lines are the 10th and 90th percentile. Three-year moving averages are taken to smooth out
yearly noises. The right panel shows the mean and standard deviation of long-run (1992-2007) raw price decline (“Raw”) and Japan
Robot Shock measured by the fixed effect ψC

o,t1
in equation (2) (“JRS”). The occupation group is routine, service (manual) and abstract,

where routine is further divided into production, transportation, and other.

thermore, the figure also shows the variation in Japan Robot Shock, or ψJ
i,t1

, in equation

(2). The large variation of the changes in prices by occupations persists even after control-

ling for the destination-year fixed effect ψD
i,t. It also confirms that after controlling for US

demand shocks, the cost of Japanese robots is strongly decreasing, especially in the pro-

duction occupation. In the following, I will use this cost variation to study the impact on

the labor market and estimate the elasticity of substitution between robots and workers.

Fact 2: Effects of the Japan robot shock on US occupations. Since the labor demand

may be affected by trade liberalization, notably the China shock in my sample period, I

control for the occupational China shock by the method developed by Autor, Dorn, and

Hanson (2013). Namely, I compute

IPWo,t ≡∑
s

ls,o,t0∆mC
s,t, (3)
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where ls,o,t0 is sector-s share of employment for occupation o, and ∆mC
s,t is the per-worker

Chinese export growth to non-US developed countries.13 Intuitively, an occupation re-

ceives a large trade shock if sectors that faced increased import competition from China

intensively employ the corresponding occupation. With this trade shock measure, I run

the following regression

∆ ln (Yo) = α0 + α1 ×
(
−ψJ

o

)
+ α2 × IPWo,t1 + Xo · α + εo, (4)

where Yo is a labor market outcome by occupations such as hourly wage and employ-

ment, Xo is the vector of baseline demographic control variables which are the female

share, the college-graduate share, the age distribution, and the foreign-born share, and ∆

is the long-run difference between 1990 and 2007.

I begin by checking the correlation between various robot measures and wage mea-

sures. In Figure 2a, the left panel shows the correlation between the Japan Robot Shock

(JRS) and US baseline wages in 1990 at the occupation level. I find that there are no sys-

tematic relationships between these variables. This indicates that the JRS did not necessar-

ily trigger wage inequality expansion during the 1990s and 2000s. Next, the middle panel

shows the result of estimation equation (4) in a scatterplot. It reveals that 10% reduction

of the Japanese robot prices decreases the US occupational wages by 1.2%. Therefore,

the Japan robot shock did have an adverse effect on US occupations, which suggests the

substitution of labor by robots. Finally, total expenditures on robots quantitatively affect

the demand for labor in each occupation, conditional on robot prices. The right panel

shows the relationship between the change in robot expenditures and wages, suggesting

negative impacts on wages also operate through the expenditure margin. This result also

indicates the substitutability of labor due to robot penetration at the occupation level.

13Specifically, following Autor, Dorn, and Hanson (2013), I take eight countries: Australia, Denmark,
Finland, Germany, Japan, New Zealand, Spain, and Switzerland. Appendix B.2 shows the distribution of
occupational employment ls,o,t0 for each sector.
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Figure 2: The Japan Robot Shock and US Occupational Wages

(a) Japan Robot Shock and Baseline
Wage

(b) Changes in Wage and Robot
Prices

(c) Changes in Wage and Robot Ex-
penditure

Note: The left panel shows the scatterplot, weighted fit line, and the 95 percent confidence interval of the baseline (1990) US log wage (horizontal axis) and the Japan Robot
Shock in equation (2) (vertical axis) at the 4-digit occupation level. The middle panel shows the relationship between the Japan Robot Shock (horizontal axis) and changes in
log wage (vertical axis). The right panel shows the relationship between the log total expenditure on Japanese robots in non-US countries (horizontal axis) and changes in log
wage (vertical axis). In all panels, the sample is all occupations that existed throughout 1970 and 2007, bubble sizes reflect the employment in the baseline year, and the number
of observation is 324. In the middle and right panel, variables are residualized by control variables (the occupational female share, college share, age distribution, foreign born
share, and the China shock in equation (3)).

14



Table 1: The heterogeneous effects of the Japan robot shock on US occupations

(1)
VARIABLES ∆ ln(wage)

(−ψJ) × Routine, production -0.627***
(0.112)

(−ψJ) × Routine, transportation -0.738***
(0.0624)

(−ψJ) × Routine, others 0.00770
(0.0536)

(−ψJ) × Service -0.0639
(0.107)

(−ψJ) × Abstract 0.00693
(0.0789)

Observations 324
R-squared 0.462

Note: The table shows the coefficients in regression (4) with allowing the coefficient α1 to vary across occupation groups. Observations
are 4-digit level occupations, and the sample includes all occupations that existed throughout 1970 and 2007. ψJ stands for the Japan
robot shock from equation (2). Control variables of the female share, the college-graduate share, the age distribution (shares of age 16-
34, 35-49, and 50-64 among workers aged 16-64), the foreign-born share as of 1990, and the China shock in equation (3), are included.
Standard errors are clustered at the 2-digit occupation level. *** p<0.01, ** p<0.05, * p<0.1.

Next, Table 1 shows the result of regression (4) with allowing the coefficient α1 to vary
across occupation groups defined above. I find the negative effect in routine production
and routine transportation occupations. Therefore, it demonstrates the heterogeneity in
the effect across occupation groups. This finding motivates me to consider group-specific
elasticity of substitution between robots and workers.

Again, the novelty in these findings lies in using the robot cost reduction at the occu-

pation level. By contrast, in Appendix B.5 and B.6, I show additional results that com-

plement the findings in Figure 2 by taking similar approaches as in the literature, such

as Acemoglu and Restrepo (2020), and confirm past findings. Appendix B.6 also shows

the pre-trend analysis revealing no systematic relation between the wage growth rates in

1970-1990 and the Japan robot shock in 1992-2007 and the analysis with the employment

outcome variable. Furthermore, to address a concern that the US is a large country that

affects robot prices more directly, I confirm that the effect of the robot price reduction on

labor demand is also observed in a small-open economy as well in Appendix A.4.

Although these data patterns and regressions are informative about the substitutabil-

ity of robots, they do not definitively give answers to the value of the substitution param-
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eter or the distributional and aggregate effect of robotization. First, the observed Japan

robot shock may reflect the quality upgrading of robots, meaning the quality-adjusted

robot cost reduction might be even more drastic. Second, changes in labor demand for

one occupation following the shock can have bearing on wages and employment in other

occupations by changing their marginal products. Third, coefficients in equation (4) re-

veals the relative effect of the Japan robot shock but not the real wage impact. I will

develop and estimate a general equilibrium model in the following sections to overcome

these issues.

3 Model

The basis of the model is a multi-country multi-factor Armington model. It has the fol-

lowing three features: (i) occupation-specific elasticities of substitution (EoS) of robots

for workers, (ii) robot trade in a large open economy, and (iii) endogenous investment in

robots with an adjustment cost. To emphasize these features, other standard points are

relegated to Appendix C.1. The estimation and quantitative exercises are based on the

full model described in Appendix C.1.

3.1 Setup

The Environment. Time is discrete and has infinite horizon t = 0, 1, . . .. There are N

countries, O occupations, and two types of tradable goods g, non-robot goods g = G and

robots g = R. To clarify country subscripts, I use l, i, and j, where l is a robot-exporting

country, i means a non-robot good-exporting and robot-importing country, and j indicates

a non-robot good-importing country, whenever I can. There is a representative household

and producer in each country. The non-robot goods are differentiated by origin countries

and can be consumed by households, invested to produce robots, and used as an input for

robot integration. Robots are differentiated by country of origin and occupation. There

are bilateral and good-specific iceberg trade costs τ
g
ij,t for each g = G, R. I use notation Y
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for the total production, Q for the quantity arrived at the destination. There is no intra-

country trade cost, so τ
g
ii,t = 1 for all i, g and t. Due to the iceberg cost, the bilateral price

of good g that country j pays to i is pg
ij,t = pg

i,tτ
g
ij,t. The non-robot goods (resp. robots)

demand elasticity is ε (resp. εR), so that the price indices in country j are

PG
j,t =

[
∑

i

(
pG

ij,t

)1−ε
]1/(1−ε)

and PR
j,o,t =

[
∑

i

(
pR

ij,o,t

)1−εR
]1/(1−εR)

,

respectively.

There are two factors of production of non-robot goods G: labor Li,o,t and robot capital

KR
i,o,t in each occupation o.14 There is no international movement of factors. Producers

own and accumulate robot capital. Households own the producers’ share in each coun-

try. All good and factor markets are perfectly competitive. Workers are forward-looking,

draw an idiosyncratic utility shock from a generalized extreme value (GEV) distribution,

pay a switching cost for changing occupation, and choose the occupation o that achieves

the highest expected value Vi,o,t among O occupations (Caliendo, Dvorkin, and Parro

2019). The elasticity of occupation switch probability with respect to the expected value

is φ. The detail of the worker’s problem is discussed in Appendix C.1.

The government in each country exogenously sets the robot tax. Specifically, buyer i

of robot o from country l in year t has to pay ad-valorem robot tax uli,t on top of the robot

producer price pR
li,o,t to buy from l. The tax revenue is uniformly rebated to country i’s

workers.

Production Functions. In country i and period t, the representative producer of non-

robot good G inputs the occupation-o service TO
i,o,t and produces with the production func-

tion

YG
i,t = AG

i,t

[
∑
o
(bi,o,t)

1
β

(
TO

i,o,t

) β−1
β

] β
β−1

, (5)

14Appendix C.1 shows the model with intermediate goods and non-robot capital. The main analytical
results are unchanged.

17



where AG
i,t is a Hicks-neutral productivity, bi,o,t is the cost share parameter of each occupa-

tion o, and β is the elasticity of substitution between each occupation from the production

side. Parameters satisfy bi,o,t > 0, ∑o bi,o,t = 1, and β > 0. Each occupation o is performed

by labor Li,o,t and robot capital KR
i,o,t by the following occupation performance function:

TO
i,o,t =

[
(1− ao,t)

1
θo (Li,o,t)

θo−1
θo + (ao,t)

1
θo

(
KR

i,o,t

) θo−1
θo

] θo
θo−1

, (6)

where θo > 0 is the elasticity of substitution between robots and labor within occupation

o that affects the changes in real wages due to adopting robots, and ao,t is the cost share

of robot capital in tasks performed by occupation o. Equation (6) is key to understanding

the automation and is discussed in detail in the next paragraph.

Robots R for occupation o are produced by investing non-robot goods IR
i,o,t with pro-

ductivity AR
i,o,t:

15

YR
i,o,t = AR

i,o,t IR
i,o,t. (7)

Note that the change in the productivity of robot production in Japan captures the Japan

robot shock in my data since, combined with the perfect competition assumption, the

robot price is inversely proportional to the productivity term in the competitive market.

Discussion–The Occupation Performance Function and Automation. It is worth men-

tioning the relationship between the occupation performance function (6) and how au-

tomation is treated in the literature. A standard approach in the literature, called the task-

based framework, sets up a producer’s allocation problem of factors (e.g., robots, labor)

to a set of tasks. It then solves the allocation problem using an assumption on the effi-

ciency structure of performing tasks for each factor. This task-based approach implies the

unit cost function identical to the one derived from the occupation production function

15The assumption simplifies the solution of the model because occupation services, intermediate goods,
and non-robot capital are used only to produce non-robot goods, but not robots. To conduct the estima-
tion and counterfactual exercises without this simplification, one would need to observe the cost shares of
intermediate goods and non-robot capital for robot producers, which is hard to measure.
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(6) using the Fréchet distribution assumption on the task-efficiency structure. Intuitively,

one can regard the occupation service as the aggregate of robot capital and labor inputs

after optimally allocating robots and workers to each task.

Since this task-based approach consists of the allocation of factors to tasks, the cost-

share parameter ao,t of equation (6) has an additional interpretation of the share of the

space of tasks performed by robot capital as opposed to labor. Following Acemoglu and

Restrepo (2020), who defined automation as the expansion of the space of tasks that robots

perform, I call the change in ao,t the automation shock.16 Real-world examples of the au-

tomation shock are discussed in Appendix B.1.

By contrast, the robot cost share ao,t also represents the quality of robots. Specifically,

the quality of goods can be regarded as a non-pecuniary “attribute whose valuation is

agreed upon by all consumers” (Khandelwal 2010). Since the increase in the cost-share

parameter ao,t implies the rise in the value of the robot input among robots and labor, it

can also be interpreted as quality upgrading of robots relative to labor when combined

with a suitable adjustment in the TFP term. In particular, equation (6) implies that in the

long run (hence dropping the time subscript), the demand for robot capital is

KR
i,o,t = ao,t

(
cR

i,o,t

PO
i,o,t

)−θo

TO
i,o,t,

where cR
i,o,t is the user cost of robot capital formally defined in Appendix C.3, and PO

i,o is

the unit cost of performing occupation o. In this equation, ao is the quality term as defined

above.

These considerations imply that the automation shock and the quality upgrading are

not distinguished in my model but have the same implication for the equilibrium. This

is the implication of the Fréchet distribution assumption. It is useful to maintain this

assumption since I can keep complex technology improvement in a single exogenous

16More specifically, the productivity term bi,o,t in equation (5) has also to be adjusted so that the increase
in ao,t does not reduce the labor productivity in equation (6). I will come back to this point in the estimation
section.
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variable ao,t.17 One of the reasons for the need to impose this assumption is the lack of

data on the set of tasks for each robot or the quality of robots. Relaxing this assumption

using rich data on this dimension would be future work.

In this paper, I consider not only the automation shock but also the shock to the price

of adopting robots. I call these two shocks as “robotization shocks” collectively. The

robotization shocks are likely to be correlated at the occupation level since innovation in

robot technology improves the applicability of robots and the cost efficiency of production

at the same time. An example of such a correlation is provided in Appendix B.1.

To the best of my knowledge, equation (6) is the most flexible formulation of substitu-

tion between robots and labor in the literature. Specifically, I show that the industry-level

unit cost function of Acemoglu and Restrepo (2020) can be obtained by θo → 0 for any

o in Lemma C.1 in Appendix C.2. I also show that my model can imply the production

structure of Humlum (2019) in Lemma C.2 in the same Appendix.

The Producer’s Problem. The producer’s problem is made of two tiers–static optimiza-

tion about labor input in each occupation and dynamic optimization about robot invest-

ment. The static part is to choose the employment conditional on market prices and cur-

rent stock of robot capital. Namely, for each i and t, conditional on the o-vector of the

stock of robot capital
{

KR
i,o,t

}
o
, producers solve

πi,t

({
KR

i,o,t

}
o

)
≡ max
{Li,o,t}o

pG
i,tY

G
i,t −∑

o
wi,o,tLi,o,t, (8)

where YG
i,t is given by the production function (5).

The dynamic optimization is about choosing the quantity of new robots to purchase, or

the size of the robot investment, given the current stock of robot capital. It is derived from

the following three assumptions. First, for each i, o, and t, robot capital KR
i,o,t accumulates

17Note, however, that this restriction is not yet sufficient to solve the potential endogeneity problem
of ao,t, although it reduces the parameter dimensionality. This point will be discussed in detail in the
estimation section.
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according to

KR
i,o,t+1 = (1− δ)KR

i,o,t + QR
i,o,t, (9)

where QR
i,o,t is the amount of new robot investment and δ is the depreciation rate of robots.

Second, I assume that the new investment is given by a CES aggregation of robot hard-

ware from country l, QR
li,o,t, and the non-robot good input Iint

i,o,t that represents the input of

software and integration, or

QR
i,o,t =

[
∑

l

(
QR

li,o,t

) εR−1
εR

] εR

εR−1
αR (

Iint
i,o,t

)1−αR

(10)

where l denotes the origin of the newly purchased robots, and αR is the expenditure share

of robot arms in the cost of investment. Discussions about the functional form choice of

equation (10) are relegated to Appendix B.1. Third, installing robots is costly and requires

a per-unit convex adjustment cost γQR
i,o,t/KR

i,o,t measured in units of robots, where γ gov-

erns the size of the adjustment cost (e.g., Holt 1960; Cooper and Haltiwanger 2006), which

reflects the complexity and sluggishness of robot adoption, as reviewed in Autor, Mindell,

and Reynolds (2020).

Given these assumptions, a producer of non-robot good G in country i solves the dy-

namic optimization problem

max{{QR
li,o,t}l

,Iint
i,o,t

}
o

∑∞
t=0

(
1

1+ι

)t [
πi,t

({
KR

i,o,t

}
o

)
−∑o

(
∑l pR

li,o,t (1 + uli,t) QR
li,o,t + PG

i,t Iint
i,o,t + γPR

i,o,tQ
R
i,o,t

QR
i,o,t

KR
i,o,t

)]
,

(11)

subject to accumulation equations (9) and (10), and given
{

KR
i,o,0

}
o
. A standard La-

grangian multiplier method yields Euler equations for investment, which I derive in Ap-

pendix C.3. Note that the Lagrange multiplier λR
i,o,t represents the equilibrium marginal

value of robot capital.
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Equilibrium. To close the model, the employment level must satisfy an adding-up con-

straint

∑
o

Li,o,t = Li,t, (12)

and markets for robots and non-robot goods clear. There is one numeraire good to pin

down the price system. I first define a temporary equilibrium in each period and then

a sequential equilibrium, which leads to the definition of a steady state. To save space,

detailed expressions are relegated in Appendix C.3.

I define the bold symbols as column vectors of robot capital KR
t ≡

[
KR

i,o,t

]
i,o

, marginal

values of robot capital λR
t ≡

[
λR

i,o,t

]
i,o

, employment Lt ≡ [Li,o,t]i,o, workers’ value func-

tions V t ≡ [Vi,o,t]i,o, non-robot goods prices pG
t ≡

[
pG

i,t

]
i
, robot prices pR

t ≡
[

pR
i,o,t

]
i,o

,

wages, wt ≡ [wi,o,t]i,o, bilateral non-robot goods trade levels QG
t ≡

[
QG

ij,t

]
i,j

, bilateral

non-robot goods trade levels QR
t ≡

[
QR

ij,o,t

]
i,j,o

, and occupation transition shares µt ≡

[µi,oo′,t]i,oo′ , where V t and µt are explained in detail in Appendix C.1. I write St ≡
[
KR′

t , λR′
t , L′t, V ′t

]′
as state variables.

Definition 1. In each period t, given state variables St, a temporary equilibrium (TE) xt is the

set of prices pt ≡
[

pG′
t , pR′

t , w′t
]′

and flow quantities Qt ≡
[

QG′
t , QR′

t , µ′t

]
that satisfy: (i)

given pt, workers choose occupation optimally by equation (C.3), (ii) given pt, producers

maximize flow profit by equation (8) and demand robots by equation (C.21), and (iii)

markets clear: Labor adds up as in equation (12), and goods markets clear with trade

balances as in equations (C.29) and (C.31).

In other words, the inputs of the temporary equilibrium are all state variables, while

the outputs are all remaining endogenous variables that are determined in each period.

Adding the conditions about state variable transitions, sequential equilibrium determines

all state variables given initial conditions as follows.

Definition 2. Given initial robot capital stocks and employment
[
KR′

0 , L′0
]′

, a sequential

equilibrium (SE) is a sequence of vectors yt ≡
[
x′t, S′t

]′
t that satisfies the TE conditions and
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employment law of motion (C.5), value function condition (C.4), capital accumulation

equation (9), producer’s dynamic optimization (C.25) and (C.24).

Finally, I define the steady state as a SE y that does not change over time.

3.2 The First-order Solution

Since the GE system is highly nonlinear and does not have a closed form solution due to

flexible robot-labor substitution, I log-linearize the system around the initial steady state.

I choose this strategy because it is well-known that the errors due to first-order approx-

imation with respect to productivity shocks are considerably small (cf. Kleinman, Liu,

and Redding 2020). Consider increases of the robot task space ao,t and of the productivity

of the robot production AR
i,o,t in baseline period t0, and combine all these changes into a

column vector ∆. Write state variables St =
[
KR′

t , λR′
t , L′t, V ′t

]′
, and use “hat” notation to

denote changes from t0, or ẑt ≡ ln (zt)− ln (zt0) for any variable zt,. I take the following

three steps to solve the model.

Step 1. In given period t, I combine the vector of shocks ∆ and (given) changes in state

variables Ŝt into a column vector Ât =
[
∆′, Ŝt

′]′
. Log-linearizing the TE conditions, I

solve for matrices Dx and DA such that the log-difference of the TE x̂t satisfies

Dx x̂t = DA Ât. (13)

In this equation, Dx is a substitution matrix, and DA Ât is a vector of partial equilibrium

shifts in period t (Adao, Arkolakis, and Esposito 2019).18

Step 2. Log-linearizing laws of motion and Euler equations around the initial steady

state, I solve for matrices Dy,SS and D∆,SS such that Dy,SSŷ = D∆,SS∆, where superscript

18Since the temporary equilibrium vector x̂t includes wages ŵt, equation (13) generalizes the general
equilibrium comparative statics formulation in Adao, Arkolakis, and Esposito (2019), who consider the
variant of equation (13) with x̂t = ŵt.

23



SS denotes the steady state. Note that there exists a block separation DA =
[

DA,∆|DA,S
]

such that equation (13) can be written as

Dx x̂t − DA,SŜt = DA,∆∆. (14)

Combined with this equation evaluated at the steady state, I have

Eyŷ = E∆∆, (15)

where

Ey ≡

 Dx −DA,T

Dy,SS

 , and E∆ ≡

 DA,∆

D∆,SS

 ,

which implies ŷ = E∆, where matrix E =
(

Ey
)−1

E∆ represents the first-order steady-

state impact of the shock ∆. This steady-state matrix E will be a key object in estimating

the model in Section 4.

Step 3. Log-linearizing laws of motion and Euler equations around the new steady state,

I solve for matrices Dy,TD
t+1 and Dy,TD

t such that Dy,TD
t+1 y̌t+1 = Dy,TD

t y̌t, where the super-

script TD stands for transition dynamics, and žt+1 ≡ ln zt+1 − ln z′ and z′ is the new

steady state value for any variable z. Log-linearized sequential equilibrium satisfies the

following first-order difference equation

Fy
t+1ŷt+1 = Fy

t ŷt + F∆
t+1∆. (16)

Following the insights in Blanchard and Kahn (1980), there is a converging matrix repre-

senting the first-order transitional dynamics Ft such that

ŷt = Ft∆ and Ft → E. (17)
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The matrix Ft characterizes the transition dynamics after robotization shocks and is used

to study the effect of policy changes in the counterfactual section.

4 Estimation

Using the Japan robot shock described in Section 2 and the general equilibrium model in

Section 3, I develop an estimation method using the model-implied optimal instrumental

variable (MOIV) from Adao, Arkolakis, and Esposito (2019). First, Section 4.1 provides

the implementation detail of the model. I then define the MOIV estimator in Section

4.2, which gives the estimation results shown in Section 4.3. Section 4.4 discusses the

performance of my estimates.

4.1 Bringing the Model to the Data

Since I observe the prices of Japanese robots and study the US labor market, I set N =

3 and aggregate country groups to the US (USA, country index 1), Japan (JPN, index

2), and the Rest of the World (ROW, index 3). To allow the heterogeneity of the EoS

between robots and labor across occupations and maintain the estimation power at the

same time, I define the occupation groups as follows. First, occupations are separated

into three broad occupation groups, Abstract, Service (Manual), and Routine following

Acemoglu and Autor (2011).19 Given the trend that robots are introduced intensively

in production and transportation (material-moving) occupations in the sample period, I

further divide routine occupations into three sub-categories, Production (e.g., welders),

Transportation (indicating transportation and material-moving, e.g., hand laborer), and

Others (e.g., repairer). As a result, I obtain five occupation groups.20 Within each group,

19Routine occupations include occupations such as production, transportation and material moving,
sales, clerical, and administrative support. Abstract occupations are professional, managerial, and techni-
cal occupations; service occupations are protective service, food preparation, cleaning, personal care, and
personal services.

20In terms of OCC2010 codes in the US Census, Routine production occupations are in [7700, 8965],
Routine transportation occupations are in [9000, 9750], Routine others are in [4700, 6130], Service (manual)
occupations are in [3700, 4650], and Abstract occupations are in [10, 3540].
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I assume a constant EoS between robots and labor. Each occupation group is denoted by

subscript g, and thus the robot-labor EoS for group g is written as θg.

I fix some parameters of the model at conventional values as follows. The annual

discount rate is ι = 0.05, and the robot depreciation rate is 10%, following Graetz and

Michaels (2018).21 I take the trade elasticity of ε = 4 from the large literature of trade

elasticity estimation (e.g., Simonovska and Waugh 2014), and εR = 1.2 derived from ap-

plying the estimation method developed by Caliendo and Parro (2015) to the robot trade

data, discussed in detail in Appendix D.1. Following Leigh and Kraft (2018), I assume

αR = 2/3. By Cooper and Haltiwanger (2006), I set the parameter of adjustment cost at

γ = 0.295. I use the estimates from Traiberman (2019) and set the dynamic occupation

switching elasticity as φ = 1.4. With these parametrization, structural parameters to be

estimated are Θ ≡
{

θg, β
}

.

Finally, since I use the first-order approximated solution, I need to measure the pre-

shock steady state yt0
, which is an input to the solution matrix E in equation (15). I

take these data from JARA, IFR, IPUMS USA and CPS, BACI, and World Input-Output

Data (WIOD). The measurement of labor market outcomes is standard and relegated to

Appendix B.7. I set robot tax in the initial period to be zero in all countries.

In the estimation, I use the changes in US occupational wages ŵ1 between 1992 and

2007 as the target variables. I use the steady-state changes from the model to match these

15-year changes in the data. Recall that the robot production function (7) implies that

ÂR
2,o is equal to the negative cost shock to produce robots in Japan, so I measure the robot

efficiency gain by

ÂR
2,o = −ψJ

o, (18)

where ψJ
o is defined in equation (2) and observed using my dataset.

21For example, see King and Rebelo (1999) for the source of the conventional value of ι which matches
the discount rate to the average real return on capital.

26



4.2 Estimation Method

I begin by discussing the identification challenge of the Japan robot shock correlated with

the unobserved automation shock. First, I impose

b̂
1

β−1
i,o

ˆ(1− ao)
1

θo−1 = 0, (19)

for any automation shock âo so that the automation shock represents a robot-augmenting

technological shock that does not change the labor productivity. Next, I decompose the

automation shock âo into the component âimp
o implied from the relative demand function

and unobserved error component âerr
o such that âo = âimp

o + âerr
o for all o. Implied com-

ponent âimp
o is implicitly defined by the steady-state change of relative demand for robots

and labor
̂(

cR
i,oKR

i,o

wi,oLi,o

)
=

âimp
o

1− ao,t0

+
(
1− θg

)
xR

12ψJ
o + εo, (20)

where xR
12 is the import share of robots from Japan in the US, and εo is the error term that

depends on the changes in wages and robot costs in the other countries. The identification

challenge is that the Japan robot shock ψJ
o does not work as an instrumental variable (IV)

in equation (20) because of a potential correlation between ψJ
o and an observed task-space

expansion shock âimp
o as mentioned in Section 3.1.

To overcome this identification issue, I employ a method based on the model solution.

A key observation is that conditional on âimp
o , and using the solution of the wage change,

the error component âerr
o can be inferred from the observed endogenous variables. Specif-

ically, from the steady-state solution matrix E, I obtain O×O sub-matrices Ew1,a, Ew1,AR
2
,

and O× NO submatrix Ew1,b such that22

ŵ = Ew1,aâ + Ew1,AR
2

ÂR
2 + Ew1,bb̂, (21)

where b̂ is the vector of occupational productivity change satisfying equation (19). Using

22Appendix C.4 explains the technical reason for the choice of the steady-state matrix in equation (21).
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â = âobs + âerr, I derive the structural residual νw ≡ Ew1,aâerr ≡ [νw,o]o, which is a vector

of length O generated from the linear combination of the unobserved component of the

automation shocks:

νw = νw (Θ) = ŵ− Ew1,aâobs − Ew1,AR
2

ÂR
2 − Ew1,bb̂.

I impose the following moment condition regarding this structural residual and the Japan

robot shock ψJ ≡
{

ψJ
o

}
o
.

Assumption 1. (Moment Condition)

E
[
νw,o|ψJ

]
= 0. (22)

Given this moment condition, it is straightforward to construct the optimal instru-

ment and implement it with the two-step estimator (Adao, Arkolakis, and Esposito 2019).

Therefore, I relegate the detailed explanation to Appendix D.2 and instead discuss the in-

terpretation of Assumption 1 and a case in which it may not hold. Assumption 1 restricts

that the structural residual ν should not be predicted by the Japan robot shock. Note

that it allows that the automation shock âo may correlate with the change in the robot

producer productivity ÂR
2,o. The structural residual νw,o purges out the first-order effects

of all shocks, â and ÂR
2 , on endogenous variables. I then place the assumption that the

remaining variation should not be predicted by the Japan robot shock from the data. Fur-

thermore, note that the correlation of the structural residuals with other shocks, such as

trade shocks, is unlikely to break Assumption 1 as I have confirmed that controlling for

such shocks does not qualitatively change the reduced-form findings in Section 2.3.

To further clarify the role of Assumption 1, consider the circumstances under which

Assumption 1 breaks. One such threat is a directed technological change, in which the

occupational labor demand drives the changes in the cost of robots (Acemoglu and Re-

strepo 2018). Specifically, suppose a positive labor demand shock in occupation o induces

the research and development of robots in occupation o and drives costs down in the
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Table 2: Parameter Estimates

Case 1: Homogeneous θg = θ Case 2: Heterogeneous θg

θg

Routine, Production 2.71
(0.32)

Routine, Transportation 1.76
(0.15)

2.05 Routine, Others 1.96
(0.19) (0.17)

Manual 1.01
(0.71)

Abstract 1.01
(0.62)

β
0.83 0.73
(0.03) (0.06)

Note: The estimates of the structural parameters based on the estimator described in Section B.1. Standard errors are in parentheses.
Parameter θ is the within-occupation elasticity of substitution between robots and labor. Parameter β is the elasticity of substitution
between occupations. The column “Case 1: θg = θ” shows the result with the restriction that θo is constant across occupation groups.
The column “Case 2: Free θg” shows the result with θg allowed to be heterogeneous across five occupation groups. Transportation
indicates “Transportation and Material Moving” occupations in the Census 4-digit occupation codes (OCC2010 from 9000 to 9750).
See the main text for other details.

long run instead of simply assuming my production function (7) with exogenous tech-

nological change. In this case, the structural residual νo does not control for this effect

and is negatively correlated with Japan robot shock ψJ
o. Another possibility that breaks

Assumption 1 is the increasing returns for robot producers, which would also imply that

the unobserved robot demand increase drives a reduction of robot costs. However, even

if this is the case, the positive impact of Japan robot costs found in Section 2.3 shows the

lower limit, and thus my qualitative results about strong substitutability are maintained.

4.3 Estimation Results

Table 2 gives the estimates of the structural parameters. The first column shows the es-

timation result when I restrict the EoS between robots and labor to be constant across

occupation groups (Case 1). The estimate of the within-occupation EoS between robots

and labor θ is around 2 and implies that robots and labor are substitutes within an occu-

pation, and rejects the Cobb-Douglas case θg = 1 at the conventional significance levels.
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The high estimate of the EoS between labor and automation capital is also found in Eden

and Gaggl (2018), while their estimate is about the elasticity with respect to ICT capital.

The point estimate of the EoS between occupations, β, is 0.83, implying that occupation

groups are complementary. The estimate is slightly higher than Humlum’s (2019) central

estimate of 0.49.

The second column shows the estimation result when I allow the heterogeneity across

occupation groups (Case 2). I find that the EoS for routine production occupations is 2.7,

while those for other routine occupations (transportation and other routine) are close to 2,

and those for other occupation groups are not significantly different from 1. Therefore, the

estimates for routine production occupations indicate the special susceptibility of workers

in these occupations to robot capital. The estimate of the EoS between occupations β does

not change qualitatively between Case 1 and Case 2.

As in the literature on estimating the capital-labor substitution elasticity, the source

of identification of these large and heterogeneous EoS between robots and labor is the

negative correlation between the Japan robot shock and the change in the labor market

outcome. Intuitively, if θg is large, then the steady-state relative robot (resp. labor) de-

mand responds strongly in the positive (resp. negative) direction conditional on a unit

decrease in the cost of using robots. This intuition is consistent with the empirical finding

in Table 1.

4.4 The Role of Automation Shocks and Model Fit

My model features two sources of shocks related to robot penetration: the Japan robot

shock that reduces the robot price and the automation shock that shifts tasks from labor

to robots. The estimated model allows me to back out the automation shock. Figure 3

summarizes these two shocks aggregated at the occupation group level. The figure re-

veals 0.2-0.6 log points of the Japan robot shock, reflecting the observed reduction in the

price of robots from Japan. More importantly, estimated automation shocks are positive

and reveal greater variation across occupation groups. The two highly automated occu-
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Figure 3: Variation in the Automation Shock and the Japan Robot Shock

Note: The scatterplot shows the estimated automation shock in the horizontal axis and the Japan robot shock in the vertical axis.
Occupations are aggregated at the occupation-group level with the initial robot expenditure weight.

pations, transportation and production, see 1.5-2 log points increase in the task shares of

robots, while the other occupation groups have 0.5 log points at the maximum. There-

fore, in the sample period, the greater increase in the robot penetration in production and

transportation occupations is explained by automation shocks rather than the Japan robot

shocks.

This point is important to evaluate the performance of the model since ignoring the

automation shock could lead to significant bias in interpreting the correlation between

wage changes and the Japan robot shock. To see this, I apply the simulated data to the

linear regression model (4) with the following two simulations.23. First, I hit the Japan

robot shock and the implied automation shock, and I call this counterfactual wage change

“targeted.” In this case, the prediction of wage changes is consistent with the moment

condition (22), and thus the linear regression coefficient α1 of equation (4) is expected

close to the one obtained from data. Second, I hit only the Japan robot shock but not the

automation shock, and I call this counterfactual wage change “untargeted.” In this case,

23Appendix D.3 gives a detailed discussion on the Japan robot shock and the backed-out implied au-
tomation shocks.

31



Table 3: Model Fit: Linear Regression with Observed and Simulated Data

(1) (2) (3)
VARIABLES ŵdata ŵ

ψJ âobs ŵψJ

−ψJ -0.118 -0.107 -0.536
(0.0569) (0.0711) (0.175)

Observations 324 324 324
Note: The author’s calculation based on the dataset generated by JARA, O*NET, and the US Census. Column (1) is the coefficient of
the Japan robot shock ψJ in the reduced-form regression with IPW. Column (2) takes the US wage change predicted by GE with ψJ as
well as other shocks such as the implied automation shock âimp. Column (3) takes the US wage change predicted by GE with shocks
including the Japan robot shock, but counterfactually fixing the implied automation shock to be zero. Heteroskedasticity-robust
standard errors in parentheses.

the moment condition (22) is violated since the structural residual does not incorporate

the unobserved automation shock, which causes a bias in the regression. The difference

in estimates from the one using the targeted wage change reveals the size of this bias.

Therefore, this exercise reveals how important it is to consider the automation shock in

estimation. Details in the method to simulate data is standard and explained in Appendix

D.4.

Table 3 shows the result of these exercises. The first column shows the estimates of

equation (4) using the data, the second column is the estimate based on the targeted wage

change, and the third column is the estimate based on the untargeted wage change. Com-

paring the first and second columns confirms that the targeted moments match well as

expected. Furthermore, examining the third column compared to these two columns, one

can see a stronger negative correlation between the simulated wage and the Japan robot

shock. This is due to the positive correlation between the Japan robot shock −ψJ
o and the

implied automation shock âimp
o , which is consistent with the fact that robotic innovations

that save costs (thus ÂR
2,o > 0 or −ψ̂J

o > 0) and that upgrade quality (thus âimp
o > 0) are

likely to happen at the same time.

More specifically, with the real data, the regression specification (4) contains a positive

bias due to this positive correlation. By contrast, the untargeted wage is free from this

bias since its data-generating process does not contain the automation shock but only the

Japan robot shock. Thus, the linear regression coefficient α1 is higher than the one ob-
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tained from the real data. In other words, if I had wrongfully assumed that the economy

did not experience the automation shock and believed the coefficient obtained in Figure

2 is bias-free, I would have estimated higher EoS by ignoring the actual positive correla-

tion between −ψJ
o and âimp

o . This thought experiment reveals that it is critical to take into

account the automation shock in estimating the EoS between robots and labor using the

Japan robot shock, and that the large EoS in my structural estimates are robust even after

taking this point into account.

5 Counterfactual Exercises

I examine a few policy-related questions using the estimated model and shocks in the

previous section. The first one is the question about the distributional effects of robo-

tization. For example, Autor, Katz, and Kearney (2008) argue that the wage inequality

measured by the ratio of the wages between the 90th percentile and the 50th percentile

(90-50 ratio) has steadily increased since 1980.24 I study how much such an increase can

be explained by the increased use of industrial robots from 1990. Next, I examine the

implications of counterfactual policies regarding regulating robot adoption. Due to the

fear of automation, policymakers have proposed regulating industrial robots using robot

taxes. The estimated model provides an answer of the short-run and long-run effects of

taxing robot purchases on real wages across occupations and aggregate welfare losses.

5.1 The Distributional Effects of Robot Adoption

To study the effect of robots to wage polarization, I show the pattern of robot accumu-

lations over the occupational wage distribution. Figure 4a shows the distribution of

estimated automation shocks across baseline wage deciles. The automation shocks are

backed out by equation (20). The figure shows a strikingly polarizing pattern: the au-

tomation shock hits in the middle of the wage distribution most severely than in the bot-
24Furthermore, as Heathcote, Perri, and Violante (2010) argue, wage inequality comprises a sizable part

of the overall economic inequality in the US.
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Figure 4: Robots, Wage Inequality, and Polarization

(a) Estimated Automation Shock (b) The Effect of Robots on Wages

Note: The left panel shows the implied automation shocks defined in equation (20). The shocks are aggregated into 10 wage deciles
in the baseline year, 1990, weighted by the initial employment level. The right panel shows the annualized occupational wage growth
rates for each wage decile, predicted by the first-order steady-state solution of the estimated model given in equation (15).

tom and top of the distribution. Note that this contrasts well with the no correlation result

in Figure 2a. These findings indicates that it was the automation shock but not the Japan

Robot Shock that caused the wage distribution dynamics during the 1990 and 2000s.

By contrast, Panel 4b shows the steady-state predicted wage growths per annum due

to the robotization shocks and the estimated model with the first-order solution given

in equation (17). Consistent with the high growth rate of robot stocks in the middle of

the wage distribution and the strong substitutability between robots and labor, I find that

the counterfactual wage growth rate in the middle deciles of the initial wage distribution

is more negative than that in the other part of the wage distribution. Quantitatively,

the 90-50 ratio observed in 1990 and 2007 is, respectively, 1.588 and 1.668. On the other

hand, the 90-50 ratio predicted by the initial 1990 data and the first-order solution (17) is

1.594. These numbers imply that a 6.4% increase in the 90-50 ratio can be explained by

the robotization shock captured in this paper.

It is worth emphasizing that we consider two shocks in this main exercise, the automa-

tion shock â and the Japan robot shock Â2. When these two shocks are distinguished in

the quantitative exercise, the automation shock reduces the labor demand due to task re-

34



allocation from labor to robots, while the Japan robot shock increases the stock of robots

and the marginal product of labor.

5.2 The Effect of Robot Tax on Occupations

To study the effect of counterfactually introducing a robot tax, consider an unexpected,

unilateral, and permanent increase in the robot tax by 6% in the US, which I call the gen-

eral tax scenario. I also consider the tax on only imported robots by 33.6%, and call it the

import tax scenario, which implies the same amount of tax revenue as in the general tax

scenario and makes the comparison straightforward between the two scenarios.25 First, I

examine the effect of the general robot tax on occupational inequality.

In Figure 5a, I show two scenarios of the steady-state changes in real occupational

wages. In one scenario, I shock the economy only with the automation shocks. In the

other scenario, I shock the economy with both the automation shocks and the robot tax.

The result shows heterogeneous effects on real occupational wages of the robot tax. The

tax mitigates the negative effect of automation on routine production workers and routine

transportation workers, while the tax marginally decreases the small gains that workers

in the other occupations would have enjoyed. Overall, the robot tax mitigates the large

heterogeneous effects of the automation shocks, which could go in negative and positive

directions depending on occupation groups, and compresses the effects towards zero.

Figure 5b shows the dynamics of the effects of only the robot tax. Although the steady-

state effects of robot tax were heterogeneous, as shown in Figure 5a, the effect is not

immediate but materializes after around 10 years, due to the sluggish adjustment in the

accumulation of the robot capital stock. Overall, I find that since the robot tax slows down

the adoption of robots, it rolls back the real wage effect of automation–workers in occupa-

tions that experienced significant automation shocks (e.g., production and transportation

in the routine occupation groups) benefit from the tax, while the others lose. Appendix

D.5 discusses the effect of robot taxes on worker welfare in each occupation.
25The 6% rate of the general tax is more modest than the 30% rate considered in Humlum (2019) for the

Danish case.
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Figure 5: Effects of the Robot Tax on Real Occupational Wages

(a) Steady-state Comparison (b) Transitional Effect of Tax

5.3 Robot Tax and Aggregate Income

Next, I study how the two robot tax schemes affect the US real income. In Figure 6a,

the solid line tracks the real-income effect of the general robot tax over a 20-year time

horizon after the tax introduction. First, the magnitude of the effect is small because the

cost of buying robots compared to the aggregate production cost is small. Second, there

is a positive effect in the short run, but this effect turns negative quickly and continues to

be negative in the long run.

To understand why there is a short-run positive effect on real income, it is useful to

distinguish the source of national income in the model. A country’s total income com-

prises workers’ wage income, non-robot goods producers’ profit, and the tax revenue

rebate. Since robots are traded, and the US is a large economy that can affect the robot

price produced in other countries, there is a terms-of-trade effect of robot tax in the US.

Namely, the robot tax reduces the demand for robots traded in the world market and

lets the equilibrium robot price go down along the supply curve. This reduction in the

robot price contributes to compressing the cost of robot investment thus to increasing the

firm’s profit, raising the real income. This positive effect is stronger in the import robot

tax scenario because the higher tax rate induces a more substantial drop in the import
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Figure 6: Effects of the Robot Tax

(a) US Real Income (b) US Robot Stock and Import Robot Price

Note: The left panel shows the counterfactual effect on the US real income of the two robot tax scenarios described in the main text
over a 20-year time horizon. The right panel shows that of the import robot tax on the US total robot stocks (solid line) and the pre-tax
robot price from Japan (dash-dot line) over the same time horizon.

robot price. While this terms-of-trade manipulation is well-studied in the trade policy lit-

erature, my setting is novel since it implies the upward-sloping export supply curve from

the GE.

The reason for the different effects on real income, in the long run, is as follows. The

solid line in Figure 6b shows the dynamic impact of the import robot tax on the accumu-

lation of robot stock. The robot tax significantly slows the accumulation of robot stocks

and decreases the steady-state stock of robots by 9.7% compared to the no-tax case. The

small robot stock reduces the firm profit, which contributes to low real income.26 These

results highlight the role that costly robot capital (de-)accumulation plays in the effect

of the robot tax on aggregate income. Figure 6b also shows the dynamic effect on import

robot prices in the dash-dot line. In the short run, the price decreases due to the decreased

demand from the US, as explained above. As the sequential equilibrium reaches the new

steady state where the US stock of robots decreases, the marginal value of the robots is

higher. This increased marginal value partially offsets the reduced price of robots in the

26For each occupation, the counterfactual evolution of robot stocks is similar to each other in percentage
and, thus, similar to the aggregate trend in percentage. This is not surprising since the robot tax is ad-
valorem and uniform across occupations.
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short run.

6 Conclusion

In this paper, I study the distributional and aggregate effects of the increased use of indus-

trial robots, with the emphasis that robots perform specified tasks and are internationally

traded. I make three contributions. First, I construct a dataset that tracks shocks to the cost

of buying robots from Japan (the Japan robot shock) across occupations in which robots

are adopted. Second, I develop a general equilibrium model that features the trade of

robots in a large open economy and endogenous robot accumulation with an adjustment

cost. Third, when estimating the model, I construct a model-implied optimal instrumen-

tal variable from the Japan robot shock in my dataset and the approximated solution of

the model to identify the occupation-specific EoS between robots and labor.

The estimates of within-occupation EoS between robots and labor is heterogeneous

and as high as 3 in production and material-moving occupations. These estimates are

significantly larger than estimates of the EoS of capital goods and workers, with a max-

imum of about 1.5, revealing the special susceptibility to robot adaptation of workers in

these occupations. The estimated model also implies that robots contributed to the wage

polarization across occupations in the US from 1990-2007. A commonly advertised robot

tax could increase the US real income in the short run but leads to a decline in the income

in the long run due to the decreased steady-state robot stock. These exercises inform

discussions on the regulation policies of industrial robots.

A Additional Empirical Results

A.1 Trends of Robot Stocks and Prices

Figure A.1 shows the US robot trends at the occupation level. In the left panel, I show the

trend of raw stock, which reveals the following two facts. Firstly, it shows that the overall
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Figure A.1: Trends of Japanese Robot Use at the US Occupation Level

(a) Stock (b) Prices

Note: The left panel shows the trend of stocks of robots in the US for each occupation, normalized at 100 in 1992. The right panel shows
the trend of prices of robots in the US for each occupation. In both panels, I highlight two occupations. “Welding” corresponds to the
occupation code in IPUMS USA, OCC2010 = 8140 “Welding, Soldering, and Brazing Workers.” “Material Handling” corresponds to
the occupation code OCC2010 = 9620 “Laborers and Freight, Stock, and Material Movers, Hand.” Years are aggregated into five-year
bins (with the last bin 2012-2017 being six-year one) to smooth out yearly noises.

robot stocks increased rapidly in the period, as found in the previous literature. Second,

the panel also depicts that the increase occurred at different speeds across occupations.

To highlight such a difference, I plot the normalized trend at 100 in the initial year in the

right panel. There is significant heterogeneity in the growth rates, ranging from a factor

of one to eight. Next, panel A.1b shows the trend of prices of robots in the US for each

occupation. In addition to the overall decreasing trend, there is significant heterogeneity

in the pattern of price falls across occupations. The price patterns are strongly correlated

across countries, with the correlation coefficient of 0.968 between the US and non-US

prices at the occupation-year level. Motivated by this finding, I use the non-US countries’

prices as the Japan robot shock to the US in the Data section.

To further emphasize the trend heterogeneity, the following two occupations are col-

ored: “Welding, Soldering, and Brazing Workers” (or “Welding”) and “Laborers and

Freight, Stock, and Material Movers, Hand” (or “Material Handling”) in these two fig-

ures. A spot welding robot is an example of a robot in routine-production occupations,

while a material-handling robot is in transportation (material-moving) occupations. On
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the one hand, the stock of welding robots grew throughout the period in the left panel,

and their average price dropped during the 1990s. On the other hand, material handling

robot stock grew rapidly, and its price increased over the sample period in the sample

period. These findings indicate the difference in automation shock realization; Robots

like welding robots followed a standard pattern of demand quantity expansion along the

demand curve, while other robots like material handling robots expanded their adoption

even though the average price increased, indicating the role of the automation shock in

the model section.

In Figure A.1b, one might find an anomaly increasing trend during 2007-2011. This

pattern emerges because during the Great Recession period, the total units decreased

more than the total sales. After the Great Recession, both the growth of sales and units

of robots accelerated. These observations suggest a structural break of the robot industry

during the Great Recession, which is out of the scope of the paper.

A.2 Details in Application-Occupation Matching

Details of the application-occupation matching are discussed. First, I access O*NET Code

Connector (https://www.onetcodeconnector.org/) and web-scraped search results in the

following way. For each robot application title listed in Section B.1, I search matches in the

webpage, and record all occupation codes, names, and match scores. Then I append the

result files acroll all applications, which is called the match score file. At this stage, since

Mounting and Measurement/inspection/test robots have overall poor matching quality,

I drop them from the data. Second, I merge the match score file and the JARA data at the

application level, and take the weighted average of robot sales values and quantities with

the weight of score, as in equation (1).

For example, consider spot welding and material handling robots. First, spot welding

is a task of combining two or more metal sheets into one by applying heat and pressure to

a small area called spot. O*NET-SOC Code 51-4121.06 has the title “Welders, Cutters, and

Welder Fitters” (“Welders” below). These suggest that spot welding robots and welders
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Figure A.2: Examples of Match Scores

(a) Spot Welding (b) Material Handling

Note: The author’s calculation from the search result of O*NET Code Connector. The bars indicate match scores for the search query
term “Spot Welding” in panel (a) and “Material Handling” in panel (b). Occupations codes are 2010 O*NET SOC codes. In each panel,
occupations are sorted in a descending way with the relative relevance scores, and the top 5 occupations are shown. See the main text
for the detail of the score.

perform the same welding task. Second, material handling is a short-distance movement

of heavy materials, another major robot application. ONET-SOC Code 53-7062.00 has

the title “Laborers and Freight, Stock, and Material Movers, Hand” (“Material Handler”

below). Again, both material handling robots and material handlers perform the material

handling task. Figure A.2 shows the top-5 match scores for spot welding and material

handling, with these two occupations at the top of the match score ranking, respectively.

A.3 Hard-cut Matching of Applications and Occupations

Although matching between applications and occupations based on equation (1) is trans-

parent in a completely automatic way instead of using researcher’s judgment, one may

concern that such a matching method may potentially contain erroneous matching due to

noise in the text description in occupation dictionary. For example, Figure A.2 reveals a

case in which spot welding robots are matched to “Laundry and Dry-cleaning Workers”

with a high score. This is primarily because the textual description for these workers in-

cludes “Apply bleaching powders to spots and spray them with steam to remove stains

from fabrics...,” which has a high matching score with the term “spot.”
In order to mitigate this concern, I examine a manual hard-cut matching between ap-
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Figure A.3: Wage and Robot Prices with a Hard-cut Matching Method

Note: The figure shows the relationship between the Japan Robot Shock based on the application-level robot measures matched to
occupations using the hard-cut method described in the main text (horizontal axis) and changes in log wage (vertical axis). The
sample includes all occupations that existed throughout 1970 and 2007, bubble sizes reflect the employment in the baseline year, and
the number of observation is 324. All variables are partialled out by control variables (the occupational female share, college share,
age distribution, foreign born share, and the China shock in equation (3)).

plications and occupations. To be more specific, I drop all application-occupation match-
ing with the matching score of 75 or below to exclude problematic matches while includ-
ing enough data variation. I then construct the matching score following equation (1)
conditional on remaining pairs and compute robot quantity and price variables. Figure
A.3 shows the result of regression specification (4) using these measures. The estimated
coefficients are somewhat larger than the ones with the preferred data matching pro-
cedure primarily because, in the hard-cut matching, erroneous matches that potentially
contain noises are removed. The statistical significance remains in all columns.

A.4 Validation Exercise in a Small Country

One concern of my main analysis is that the US is a large buyer of robots, and thus its

demand may influence the price. To mitigate it, I conduct a robustness exercise using

data from a small country that is unlikely to affect the world price of robots. Specifically,

I use data from the Netherlands as a case since it is the largest exporting destination of

Japanese robots in Europe, following Germany, the UK, Italy, and France, and yet a small-

open economy at the same time. The data are taken from the IPUMS international and

provide the ISCO 1-digit level occupation indicator in the years 2001 and 2011. I aggregate
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Figure A.4: The Effect of Japan Robot Shock in the Netherlands
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Note: The bubble plot and fitted line between the Netherland occupational growth and the Japan robot shock are shown. The period
is from 2001 to 2011. The size of the bubble reflects the initial period size of employment. The occupations are aggregated to the ISCO
1-digit level. The shade indicates the 95% confidence interval.

the occupational robot prices at the same level and examine the relationship between the

Japan robot shock and occupational employment growth. Since the wage variable is not

available in the IPUMS international, I use the employment variable to proxy the labor

demand changes. Figure A.4 summarizes the results. Despite a significant difference

in context and the level of data aggregation, I find a significant negative relationship

between these two variables. This exercise suggests that the reduction of the price of

Japanese robots, which is likely to hit small-open economies exogenously, reduces the

labor demand in the Netherlands.
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Appendix For Online Publication

B Online Data Appendix

B.1 Detailed Information about Industrial Robots

Robot Definition and Examples. As defined in Footnote 1, industrial robots are defined as

multiple-axes manipulators. More formally, following International Organization for Standard-

ization (ISO), I define robots as “automatically controlled, reprogrammable, multipurpose manip-

ulator, programmable in three or more axes, which can be either fixed in place or mobile for use

in industrial automation applications” (ISO 8373:2012). This section gives a detailed discussion

about such industrial robots. Figure B.1 shows the pictures of examples of industrial robots that

are intensively used in the production process and considered in this paper. The left panel shows

spot-welding robots, while the right panel shows the material-handling robots.

JARA Robot Applications. In addition to applications in Section B.1, the full list of robot appli-

cations available in JARA data is Die casting; Forging; Resin molding; Pressing; Arc welding; Spot

welding; Laser welding; Painting; Load/unload; Mechanical cutting; Polishing and deburring;

Gas cutting; Laser cutting; Water jet cutting; General assembly; Inserting; Mounting; Bonding;

Soldering; Sealing and gluing; Screw tightening; Picking alignment and packaging; Palletizing;

Measurement/inspection/test; and Material handling.

One might wonder if robots can be classified as one of these applications since robots are char-

acterized by versatility as opposed to older specified industrial machinery (KHI 2018). Although

it is true that a robot may be reprogrammed to perform more than one task, I claim that robots

are well-classified to one of the applications listed above since the layer of dexterity is different.

Robots might be able to adjust a model change of the products, but are not supposed to perform

different tasks across the 4-digit occupation level. To support this point, recall that “SMEs are

mostly high-mix/low-volume producers. Robots are still too inflexible to be switched at a reason-

able cost from one task to another” (Autor, Mindell, and Reynolds 2020). Due to this technological

bottleneck, it is still infeasible to have such a versatile robot that can replace a wide range of work-

ers at the 4-digit occupation level for the sample period of my study.
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Figure B.1: Examples of Industrial Robots

(a) Spot Welding (b) Material Handling

Sources: Autobot Systems and Automation (https://www.autobotsystems.com) and PaR Systems (https://www.par.com)

The Cost of Using Robots and Robot Aggregation Function. A modern industrial robot is typ-

ically not stand-alone hardware (e.g., robot joints and arms) but an ecosystem that includes the

hardware and control units operated by software (e.g., computers and robot-programming lan-

guage). Due to its complexity, installing robots in the production environment often requires

hiring costly system integrators that offer engineering knowledge for integration. Therefore, the

relevant cost of robots for adopters includes hardware, software, and integration costs.27 The av-

erage price measure of robots used in this paper should be interpreted as reflecting part of overall

robot costs. Even though this follows the literature’s convention due to the data limitation about

the robot software and integration, I address this point in the model section by separately defining

the observable hardware cost using my data and the unobserved components of the cost. Namely,

equation (9) explicitly includes the software and integration, reflecting a feature of modern indus-

trial robots being typically not stand-alone hardware but an ecosystem that includes control units

operated by software requiring significant amount of resources for integration.

Relatedly, equation (9) follows the formulation of the trade of capital goods in Anderson,

Larch, and Yotov (2019) in the sense that the robots are traded because they are differentiated

by origin country l. Note that equation (10) implies that the origin-differentiated investment good

27As Leigh and Kraft (2018) pointed out, the current industry and occupation classifications do not allow
separating system integrators, making it difficult to estimate the cost from these classifications. In addition,
relevant costs associated with the robot still remain, e.g., maintenance fees, of which we also lack quanti-
tative evidence. Although understanding these components of the costs is of first-order importance, this
paper follows the literature convention and measures robots from the market transaction of hardware.
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is aggregated at first and then added to the stock of capital following equation (9). This trick helps

reduce the number of capital stock variables and is also used in Engel and Wang (2011).

Examples of Robotics Innovation. In the model, I call a change in the robot task space ao,t as the

automation shock, and that in robot producer’s TFP AR
l,o,t as the cost shock to produce robots. In

this section, I show some examples of changes of robot technology and new patents to facilitate un-

derstandings of these interpretation. An example of task space expansion is adopting Programmed

Article Transfer (PAT, Devol 1961). PAT was machine that moves objects by a method called “teach-

ing and playback”. Teaching and playback method needs one-time teaching of how to move,

after which the machine playbacks the movement repeatedly and automatically. This feature frees

workers of performing repetitive tasks. PAT was intensively introduced in spot welding tasks.

KHI (2018) reports that among 4,000 spot welding points, 30% were done be human previously,

which PAT took over. Therefore, I interpret the adoption of PAT as the example of the expansion

of the robot task space, or increase in ao,t, like AR.

An example of cost reduction is adopting Programmable Universal Manipulator for Assembly

(PUMA). PUMA was designed to quickly and accurately transport, handle and assemble auto-

mobile accessories. A new computer language, Variable Assembly Language (VAL), made it possible

because it made the teaching process less work and more sophisticated. In other words, PUMA

made tasks previously done by other robots but at cheaper unit cost per unit of task.

It is also worth mentioning that introduction of a new robot brand typically contains both

components of innovation (task space expansion and cost reduction). For example, PUMA also

expanded task space of robots. Since VAL allowed the use of sensors and “expanded the range

of applications to include assembly, inspection, palletizing, resin casting, arc welding, sealing and

research” (KHI 2018).

B.2 Data Sources in Detail

In addition to the JARA and O*NET data, I use data from IFR, BACI, WIOD, IPUMS USA, and

CPS. IFR is a standard data source of industrial robot adoption in several countries (e.g., Graetz

and Michaels 2018; Acemoglu and Restrepo, 2020, AR hereafter), to which JARA provides the
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robot data of Japan.28 I use IFR data to show the total robot adoption in each destination country.

BACI provides disaggregated data on trade flows for more than 5000 products and 200 countries

(Gaulier and Zignago 2010), which is used to obtain the measure of international trade of indus-

trial robots and baseline trade shares. To obtain the intermediate inputs shares, I take data from

the World Input-Output Data (WIOD) in the closest year to the initial year, 1992. IPUMS USA

collects and harmonizes US census microdata (Ruggles et al. 2018). I use Population Censuses

(1970, 1980, 1990, and 2000) and American Community Surveys (ACS, 2006-2008 3-year sample

and 2012-2016 5-year sample). I obtain occupational wages, employment, and labor cost shares

from these data sources.

I focus on consistent occupations between the 1970 Census and the 2007 ACS that cover the

sample period and pre-trend analysis period to obtain consistent data across periods. There-

fore, this paper focuses on the intensive-margin substitution in occupations as opposed to the

extensive-margin effect of automation that creates new labor-intensive tasks and occupations

(Acemoglu and Restrepo 2018). My dataset shows that 88.7 percent of workers in 2007 worked in

the occupations that existed in 1990. It is an open question how to attribute the creation of new

occupations to different types of automation goods like occupational robots in my case, although

Autor and Salomons (2019) explore how to measure the task contents of new occupations.

I follow Autor, Dorn, and Hanson (2013) for Census/ACS data cleaning procedure. Namely,

I extract the 1970, 1980, 1990, 2000 Censuses, the 2006-2008 3-year file of American Community

Survey (ACS), and the 2012-2016 5-year file of ACS from Integrated Public Use Micro Samples.

For each file, I select all workers with the OCC2010 occupation code whose age is between 16

and 64 and who is not institutionalized. I compute education share in each occupation by the

share of workers with more than “any year in college,” and foreign-born share by the share of

workers whose birthplace is neither in the US nor in US outlying areas/territories. I compute

hours worked by multiplying usual weeks worked and hours worked per week. For 1970, I use

the median values in each bin of the usual weeks worked variable and assume all workers worked

for 40 hours a week since the hour variable does not exist. To compute hourly wage, I first impute

each state-year’s top-coded values by multiplying 1.5 and divide by the hours worked. To remove

outliers, I take wages below first percentile of the distribution in each year, and set the maximum

28As of August 2020, the JARA association consists of 381 member companies, with the number of full
members being 54, associate members being 205, and supporting members being 112.
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wage as the top-coded earning divided by 1,500. I compute the real wage in 2000 dollars by

multiplying CPI99 variable prepared by IPUMS. I use the person weight variable for aggregating

all of these variables to the occupation level.

To estimate the model with workers’ dynamic discrete choice of occupation, I further use the

bilateral occupation flow data following the idea of Caliendo, Dvorkin, and Parro (2019). Specifi-

cally, I obtain the Annual Social and Economic Supplement (ASEC) of the CPS since 1976. For each

year, I select all workers with the 2010 occupation code for the current year (OCC2010) and the

last year (OCC10LY) whose age is between 16 and 64 and who is not institutionalized. I then con-

structed varaibles using the same method as the one used for Census/ACS above. As pointed out

by Artuç, Chaudhuri, and McLaren (2010), 4-digit occupations are too disaggregated for the small

sample size of CPS-ASEC to precisely estimate the occupation switching probability. Therefore, I

assume that the workers do not flow between 4-digit occupations within the 5 occupation groups

defined in Section 2, but do between the 5 groups. I also assume that workers draw a destination

4-digit occupation occupation from the initial-year occupational employment distribution within

the destination group when switching occupations. With these data and assumptions, I compute

the occupation switching probability by year.

B.3 Trade of Industrial Robots

To compute the trade shares of industrial robots, I combine BACI and IFR data. In particular, I

use the HS code 847950 (“Industrial Robots For Multiple Uses”) to measure the robots, following

Humlum (2019). I approximate the initial year value by year of 1998, when the this HS code of

robots is first available. To calculate the total absorption value of robots in each country, I use the

IFR data’s robot units (quantities), combined with the price indices of robots occasionally released

by IFR’s annual reports for selected countries. These price indices do not give disaggregation by

robot tasks or occupations, highlighting the value added of the JARA data. Figure B.2 the pattern

of international trade of international robots. In the left panel, I compute the import-absorption

ratio. To remove the noise due to yearly observations and focus on a long-run trend, I aggregate

by five-year bins 2001-2005 and 2011-2015. The result indicates that many countries import robots

as opposed to produce in their countries. Japan’s low import ratio is outstanding, revealing that

its comparative advantage in this area. It is noteworthy that China largely domesticated the pro-
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Figure B.2: Trade of Industrial Robots

(a) Robot Import-Absorption Ratio (b) World Robot Export Share, 2001-2005

Note: The author’s calculation from the IFR, and BACI data. The left panel show the fraction of import in the total absorption value.
The import value is computed by aggregating trade values across origin country in the BACI data (HS-1996 code 847950), and the
absorption value is computed by the price index and the quantity variable available for selected countries in the IFR data. The data
are five-year aggregated in 2001-2005 and 2011-2015, and countries are sorted according to the import shares in 2001-2005 in the
descending order. The right panel shows the export share for 2001-2005 aggregates obtained from the BACI data.

duction of robots over the sample period. Another way to show grasp the comparative advantage

of the robot industry is to examine the share of exports as in the right panel of Figure B.2. Roughly

speaking, the half of the world robot market was dominated by EU and one-third by Japan in

2001-2005. The rest 20% is shared by the rest of the world, mostly by the US and South Korea.

Figure B.3 shows the trend of export and import shares of robots among the world for the US,

Japan, and the Rest Of the World. The trends are fairly stable for the three regions of the world,

except that the import share of the US has declined relative to the ROW.

Robots from Japan in the US, Europe, and the Rest of the World To compare the pattern of

robot adoption internationally, I generate the growth rates of stock of robots between 1992 and

2017 at the occupation level for each group of destination countries. The groups are the US, the

non-US (all countries excluding the US and Japan), and five European countries (or “EU-5”), Den-

mark, Finland, France, Italy, and Sweden used in AR. The perpetual inventory method with de-

preciation rate of δ = 0.1 is used to calculate the stock of robots, following Graetz and Michaels

(2018).

Figure B.4 shows scatterplots of the growth rates at the occupation level. The left panel shows

the growth rates in the US on the horizontal axis and the ones in non-US countries on the vertical
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Figure B.3: Robot Trade Share Trends

(a) Exports (b) Imports

Note: The author’s calculation of world trade shares based on the BACI data. Industrial robots are measured by HS code 847950
(Industrial robots for multiple uses).

axis. The right panel shows the same measures on the horizontal axis, but the growth rates in

the set of EU-5 countries on the vertical axis. These panels show that the stocks of robots at the

occupation level grow (1992-2017) between the US and non-US proportionately relative to those

between the US and EU-5. This finding is in contrast to AR, who find that the US aggregate robot

stocks grew at a roughly similar rate as those did in EU-5. It also indicates that non-US growth

patterns reflect growths of robotics technology at the occupation level available in the US. I will

use these patterns as the proxy for robotics technology available in the US. In Section 3 and on,

I take a further step and solve for the robot adoption quantity and values in non-US countries in

general equilibrium including the US and non-US countries.

A potential reason for the difference between my finding and AR’s is the difference in data

sources. In contrast to the JARA data I use, AR use IFR data that include all robot seller countries.

Since EU-5 is closer to major robot producer countries other than Japan, including Germany, the

robot adoption pattern across occupations may be influenced by their presence. If these close

producers have a comparative advantage in producing robots for a specific occupation, then EU-5

may adopt the robots for such occupations intensively from close producers. In contrast, countries

out of EU-5, including the US, may not benefit the closeness to these producers. Thus they are

more likely to purchase robots from far producers from EU-5, such as Japan.
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Figure B.4: Growth Rates of Robots at the Occupation Level

(a) Comparison between the US and non-US (b) Comparison between the US and EU-5

Note: The author’s calculation based on JARA, and O*NET. The left panel shows the correlation between occupation-level growth
rates of robot stock quantities from Japan to the US and the growth rates of the quantities to the non-US countries. The right one
shows the correlation between growth rates of the quantities to the US and EU-5 countries. Non-US are the aggregate of all countries
excluding the US and Japan. EU-5 are the aggregate of Denmark, France, Finland, Italy, and Sweden used in Acemoglu and Restrepo
(2020). Each bubble shows an occupation. The bubble size reflects the stock of robot in the US in the baseline year, 1992. See the main
text for the detail of the method to create the variables.

B.4 Potential Methods for Adjusting the Robot Prices

In the paper, I use the general equilibrium model to control for the quality component of robot

prices. However, there are other methods proposed in the literature of measuring the price of

capital goods. In this subsection, I briefly describe these methods and their limitations.

Another approach to solving this issue is to control for the quality change by the hedonic

approach as in Timmer, Van Ark, et al. (2007), and in the application to digital capital in Tambe

et al. (2019). The hedonic approach requires detailed information about the detailed specification

of each robot. Unfortunately, it is difficult to keep track of the detailed specifications of commonly

used robots as the robotics industry is rapidly changing.

Another method is a more data-driven one. Specifically, the Bank of Japan (BoJ) provides the

quality-controlled price index. However, the method is not clearly declared. In fact, it is claimed

to be “cost-evaluation method,” in which the BoJ asks producer firms to measure the component

of quality upgrading for price changes between periods. Unfortunately, I do not know the survey

firms and quality components. Therefore, it is hard for me to determine better measures, and so I

stick to use my raw price measure based on the representativeness of my data.
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B.5 The Effect of Robots from Japan and Other Countries

A potential concern for my empirical setting is a selection issue regarding the robot source coun-

try. Specifically, robots from Japan may differ from those from other countries, so the labor market

implications may also differ between them. Unfortunately, it is hard to directly compare the ef-

fects of these two different groups of robots due to the data limitation, so I will focus on the best

comparable measures of robotization between Japan-sourced robots and robots from all countries,

which is the quantity of robot stock. Namely, I take the total stock of robot quantity in the US from

the IFR data. The IFR data only has the total number and they do not specify the source country. I

then convert the IFR application codes to the JARA application codes to use the allocation rule for

matching the JARA application codes and the occupation codes. As a result, I obtain the robots

used in the US that are sourced from any country at the occupation level. I then run the following

regression using the obtained robot measures and my preferred measure from the JARA:

∆Yo = βQ∆KR,Q
o + XoγQ + εQ

o , (B.1)

where ∆Yo is the changes in wages at the occupation-o level, ∆KQ
o is the measure of the number

of robots taken either from JARA (i.e., robots from Japan) or IFR (i.e., robots from the world), and

εQ
o is the error term. The coefficient of interest is βQ, which gives us an insight into the correlation

between the changes in labor market outcomes and the changes in robot quantity, depending

on whether the robots are sourced from Japan. Specifically, if robots from Japan may substitute

workers stronger than robots from the other countries, coefficient βQ is expected to be larger when

we use the JARA robot measure than IFR.

Table B.1 shows the regression result of equation (B.1). The result for the IFR data is in line with

the previous findings by Acemoglu and Restrepo (2020). Table B.1 reveals that both the JARA- and

IFR-based robot measures capture the substitution of workers with robots, although the coefficient

is somewhat stronger for JARA robot measures than for IFR.

B.6 Further Analysis about Fact 2

Table B.2 shows the results of regression (4) using several alternative outcome periods and robot

measures in the right-hand side. Panel A takes the wage change between 1990-2007, the main
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Table B.1: Regression Result of Labor Market Outcome on JARA and IFR Robot Stocks

(1) (2) (3) (4)
VARIABLES ∆ ln(w) ∆ ln(w) ∆ ln(w) ∆ ln(w)

∆ ln(KR,Q
JPN→USA) -0.372 -0.271

(0.0466) (0.0304)
∆ ln(KR,Q

USA) -0.144 -0.111
(0.0300) (0.0185)

Observations 324 324 324 324
R-squared 0.307 0.200 0.349 0.262
Controls X X

Note: Regression results of the changes in occupational wage are shown. Observations are 4-digit level occupations, and the regression
is between 1990 and 2007 with the sample of all occupations that existed between 1970 and 2007. Columns 1 and 3 take robot measures
from Japan from JARA data, while columns 2 and 4 take robot measures from the world from IFR data as explained in the main text.
Columns 1 and 2 do not include the control variables of demographic variables (female share, age distribution, college-graduate share,
and foreign-born share) and China trade shock in equation (3), while columns 3 and 4 do. Heteroskedasticity-robust standard errors
are reported in the parenthesis.

period, while Panel B takes the change between 1970-1990, the pre-sample period. In each panel,

columns differ by two dimensions: (i) the robot measure, out of the robot stock in the US and

other countries (non-US) and the robot price in the US and other countries, and (ii) whether the

regressions include control variables of demographic variables and the China trade shock.
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Table B.2: Regression of Wages on Robot Measures

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES dln wage dln wage dln wage dln wage dln wage dln wage dln wage dln wage

A. 1990-2007
Robot Measure -0.169 -0.196 -0.180 -0.171 -0.0399 -0.0798 -0.210 -0.206

(0.0395) (0.0398) (0.0460) (0.0463) (0.0399) (0.0346) (0.0601) (0.0458)

R-squared 0.066 0.283 0.055 0.245 0.005 0.214 0.093 0.284

B. 1970-1990
Robot Measure 0.00691 0.00772 -0.00388 0.00142 0.00699 -0.00480 0.00866 0.0189

(0.0262) (0.0233) (0.0306) (0.0269) (0.0236) (0.0244) (0.0286) (0.0240)

R-squared 0.000 0.079 0.000 0.079 0.000 0.079 0.000 0.081

Robot Measure US Stock US Stock - US Price - US Price Non-US Stock Non-US Stock - Non-US Price - Non-US Price
Controls No Yes No Yes No Yes No Yes
Observations 324 324 324 324 324 324 324 324

Note: The author’s calculation based on JARA, O*NET, and US Census/ACS. Observations are 4-digit level occupations, and the sample is all occupations that existed throughout
1970 and 2007. Panel A takes the wage change between 1990-2007, the main period, while Panel B takes the change between 1970-1990, the pre-sample period. The regressors are
robot stock in the US (columns 1 and 2), robot stock in non-US countries (columns 3 and 4), robot price in the US (columns 5 and 6), or robot price in non-US countries (columns
7 and 8). Control variables are demographic variables (the female share, the college-graduate share, the share of age 16-34, 35-49, and 50-64 among workers aged 16-64, and the
foreign-born share as of 1990), and the China trade shock defined in equation (3). Bootstrapped standard errors are reported in the parentheses.
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Table B.3: The heterogeneous effects of the Japan robot shock on US occupations

(1)
VARIABLES ∆ ln(emp)

(−ψJ) × Routine, others -0.657***
(0.229)

(−ψJ) × Routine, transportation -0.258
(0.180)

(−ψJ) × Routine, production -0.0651
(0.143)

(−ψJ) × Service -0.126
(0.227)

(−ψJ) × Abstract -0.342
(0.256)

Observations 324
R-squared 0.126

Note: The table shows the coefficients in regression (4) with allowing the coefficient α1 to vary across occupation groups, with the
outcome variable of the long difference of log employment from 1990 to 2007. Observations are 4-digit level occupations, and the
sample includes all occupations that existed throughout 1970 and 2007. ψJ stands for the Japan robot shock from equation (2). Control
variables of the female share, the college-graduate share, the age distribution (shares of age 16-34, 35-49, and 50-64 among workers
aged 16-64), the foreign-born share as of 1990, and the China shock in equation (3), are included. Standard errors are clustered at the
2-digit occupation level. *** p<0.01, ** p<0.05, * p<0.1.

Table B.3 shows the regression result of 4 with the outcome variable of employment. I find a

qualitatively similar pattern in the sense that employment in a subset of the routine occupation

group (production workers) is reduced in the occupations that experienced the Japan Robot Shock,

while we do not find a statistically significant point estimate for transportation workers.

B.7 Data on Initial Shares

Since the log-linearized sequential equilibrium solution depends on several initial share data gen-

erated from the initial steady state, I discuss the data sources and methods for measuring these

shares. I define t0 = 1992 and the time frequency is annual. I consider the world that consists

of three countries {USA, JPN, ROW}. Table B.4 summarizes overview of the variable notations,

descriptions, and data sources. I take matrices of trade of goods and robots by BACI data. As in

Humlum (2019), I measure robots by HS code 847950 (“Industrial Robots For Multiple Uses”) and

approximate the initial year value by year of 1998, in which the robot HS code is first available.

To obtain the domestic robot absorption data, I take from IFR data the flow quantity variable

and the aggregate price variable for a selected set of countries. I then multiply these to obtain
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Table B.4: List of Data Sources

Variable Description Source
ỹG

ij,t0
, x̃G

ij,t0
, ỹR

ij,t0
, x̃R

ij,t0
Trade shares of goods and robots BACI, IFR

x̃O
i,o,t0

Occupation cost shares IPUMS
li,o,t0 Labor shares within occupation JARA, IFR, IPUMS

sG
i,t0

, sV
i,t0

, sR
i,t0

Robot expenditure shares BACI, IFR, WIOT
αi,M Intermediate input share WIOT

USA and JPN robot adoption value. For robot prices in ROW, I take the simple average of the

prices among the set of countries (France, Germany, Italy, South Korea, and the UK, as well as

Japan and the US) for which the price is available in 1999, the earliest year in which the price

data are available. Graetz and Michaels (2018) discuss prices of robots with the same data source.

Figure B.5 shows the comparison of the US price index measure available between JARA and IFR.

The JARA measures are disaggregated by 4-digit occupations. The figure shows the 10th, 50th

(median), and 90th percentiles each year, as in Figure 1a. All measures are normalized at 1999,

the year in which the first price measure is available in the IFR data. Overall, the JARA price

trend variation tracks the overall price evolution measured by IFR reasonably well: The long-

run trends from 1999 to the late 2010s are similar between the JARA median price and the IFR

price index. During the 2000s, the IFR price index drops faster than the median price in the JARA

data. It compares with the JARA 10th percentile price, which could be due to robotic technological

changes in other countries than Japan in the corresponding period.

I construct occupation cost shares x̃O
i,o,t0

and labor shares within occupation li,o,t0 as follows. To

measure x̃O
i,o,t0

, I aggregate the total wage income of workers that primarily works in each occupa-

tion o in year 1990, the Census year closest to t0. I then take the share of this total compensation

measure for each occupation. To measure li,o,t0 , I take the total compensation as the total labor cost

and a measure of the user cost of robots for each occupation. The user cost of robots is calculated

with the occupation-level robot price data available in IFR and the set of calibrated parameters in

Section 4.1. Table B.5 summarizes these statistics for the aggregated 5 occupation groups in the

US. The cost for production occupations and transportation occupations comprise 18% and 8%

of the US economy, respectively, totaling more than one-fourth. Furthermore, the share of robot

cost in all occupations is still quite low with the highest share of 0.19% in production occupations,

revealing still small-scale adoption of robots from the overall US economy.
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Figure B.5: Comparison of US Price Indices between JARA and IFR

Note: The author’s calculation of US robot price measures in JARA and IFR. The JARA measures are disaggregated by 4-digit occupa-
tions, and the figure shows the 10th, 50th (median), and 90th percentiles each year. All measures are normalized at 1999, the year in
which the first price measure is available in the IFR data.

Table B.5: Baseline Shares by 5 Occupation Group

Occupation Group x̃O
1,o,t0

lO
1,o,t0

yR
2,o,t0

xR
1,o,t0

xR
2,o,t0

xR
3,o,t0

Routine, Production 17.58% 99.81% 64.59% 67.49% 62.45% 67.06%
Routine, Transportation 7.82% 99.93% 12.23% 11.17% 13.09% 11.04%

Routine, Others 28.78% 99.99% 10.88% 9.52% 11.68% 10.40%
Service 39.50% 99.99% 8.87% 8.58% 9.17% 8.32%

Abstract 6.32% 99.97% 3.43% 3.24% 3.60% 3.18%

Note: The author’s calculation of initial-year share variables based on the US Census, IFR, and JARA. As in the main text, country 1
indicates the US, country 2 Japan, and country 3 the rest of the world. See the main text for the construction of each variable.

To calculate the effect on total income, I also need to compute the sales share of robots by

occupations yR
i,o,t0
≡ YR

i,o,t0
/ ∑o YR

i,o,t0
and the absorption share xR

i,o,t0
≡ XR

i,o,t0
/ ∑o XR

i,o,t0
. To obtain

yR
i,o,t0

, I compute the share of robots by occupations produced in Japan yR
2,o,t0

= YR
2,o,t0

/ ∑o YR
2,o,t0

and

assume the same distribution for other countries due to the data limitation: yR
i,o,t0

= yR
2,o,t0

for all

i. To have xR
i,o,t0

, I compute the occupational robot adoption in each country by XR
i,o,t0

= PR
i,t0

QR
i,o,t0

,

where QR
i,o,t0

is the occupation-level robot quantity obtained by the O*NET concordance generated

in Section 2.2 applied to the IFR application classification. As mentioned above, the robot price

index PR
i,t0

is available for a selected set of countries. To compute the rest-of-the-world price index

PR
3,t0

, I take the average of all available countries weighted by the occupational robot values each
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Table B.6: 1990 Occupation Group Switching Probability

Routine
Service Abstract

Production Transportation Others

Routine
Production 0.961 0.011 0.010 0.006 0.012
Transportation 0.020 0.926 0.020 0.008 0.025
Others 0.005 0.006 0.955 0.020 0.014

Service 0.003 0.002 0.020 0.967 0.007
Abstract 0.014 0.014 0.036 0.015 0.922

Note: The author’s calculation from the CPS-ASEC 1990 data. The conditional switching probability to column occupation group
conditional on being in each row occupation.

year. The summary table for these variables yR
i,o,t0

and xR
i,o,t0

at 5 occupation groups are shown in

Table B.5. All values in Table B.5 are obtained by aggregating 4-digit-level occupations, and raw

and disaggregated data are available upon request.

I take the intermediate input share αi,M, from World Input-Output Tables (WIOT Timmer,

Dietzenbacher, et al. 2015). Finally, I combine the trade matrix generated above and WIOT to

construct the good and robot expenditure shares sG
i,t0

, sV
i,t0

, and sR
i,t0

. In particular, with the robot

trade matrix, I take the total sales value by summing across importers for each exporter, and total

absorption value by summing across exporters for each importers. I also obtain the total good

absorption by WIOT. From these total values, I compute expenditure shares.

As initial year occupation switching probabilities µi,oo′,t0 , I take 1990 flow Markov transition

matrix from the cleaned CPS-ASEC data created in Section B.2. Table B.6 shows this initial-year

conditional switching probability. The matrix for the other years are available upon request. As for

other countries than the US, although Freeman, Ganguli, and Handel (2020) has begun to develop

occupational wage measures consistent across country, world-consistent occupation employment

data are hard to obtain. Therefore, I assign the same flow probabilities for other countries in my

estimation.

C Online Theory Appendix
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C.1 The Full Model

The full model used for structural estimation extends the one in the model section with worker

dynamics, intermediate goods and non-robot capital.

Workers’ Problem I formalize the assumptions behind the derivation and show equations (C.3)

and (C.4). Overall, workers are immobile across countries, but choose an occupation by solving

a dynamic discrete choice problem to (Traiberman 2019; Humlum 2019).29 Specifically, workers

choose the occupations that maximize the lifetime utility based on switching costs and the draw

of an idiosyncratic shock. The problem has a closed form solution when the shock follows an ex-

treme value distribution, which is the property that the previous literature utilized (e.g., Caliendo,

Dvorkin, and Parro 2019).

Fix country i and period t. There is a mass Li,t of workers. In the beginning of each period,

worker ω ∈
[
0, Li,t

]
draws a multiplicative idiosyncratic preference shock {Zi,o,t (ω)}o that follows

an independent Fréchet distribution with scale parameter AV
i,o,t and shape parameter 1/φ. Note

that one can simply extend that the idiosyncratic preference follows a correlated Fréchet distribu-

tion to allow correlated preference across occupations, as in Lind and Ramondo (2018). To keep

the expression simple, I focus on the case of independent distribution. A worker ω then works in

the current occupation, earns income, consumes and derives logarithmic utility, and then chooses

the next period’s occupation with discount rate ι. When choosing the next period occupation o′,

she pays an ad-valorem switching cost χi,oo′,t in terms of consumption unit that depends on cur-

rent occupation o. She consumes her income in each period. Thus, worker ω who currently works

in occupation ot maximizes the following objective function over the future stream of utilities by

choosing occupations {os}∞
s=t+1:

Et

∞

∑
s=t

(
1

1 + ι

)s−t [
ln (Ci,os,s) + ln

(
1− χi,osos+1,s

)
+ ln

(
Zi,os+1,s (ω)

)]
(C.1)

where Ci,o,s is a consumption bundle when working in occupation o in period s ≥ t, and Et is

the expectation conditional on the value of Zi,ot,t (ω). Each worker owns occupation-specific labor

endowment li,o,t. I assume that her income is comprised of labor income wi,o,t and occupation-

29By contrast, Yoshida 2019 considers effects of international immigration on adoption of automation.
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specific ad-valorem government transfer with rate Ti,o,t. Given the consumption price PG
i,t, the

budget constraint is

PG
i,tCi,o,t = wi,o,tli,o,t (1 + Ti,o,t) (C.2)

for any worker, with PG
i,t being the price index of the non-robot good G.

Following the similar derivation as Caliendo, Dvorkin, and Parro (2019), equations (C.1) and

(C.2) imply workers optimization conditions that can be characterized by, for each country i and

period t, the transition probability µi,oo′,t from occupation o in period t to occupation o′ in period

t + 1, and the exponential expected value Vi,o,t for occupation o that satisfy

µi,oo′,t =

(
(1− χi,oo′,t) (Vi,o′,t+1)

1
1+ι

)φ

∑o′′
(
(1− χi,oo′′,t) (Vi,o′′,t+1)

1
1+ι

)φ , (C.3)

Vi,o,t = Γ̃Ci,o,t

[
∑
o′

(
(1− χi,oo′,t) (Vi,o′,t+1)

1
1+ι

)φ
] 1

φ

, (C.4)

respectively, where Ci,o,t+1 is the real consumption, χi,oo′,t is an ad-valorem switching cost from

occupation o to o′, φ is the occupation-switch elasticity, Γ̃ ≡ Γ (1− 1/φ) is a constant that depends

on the Gamma function Γ (·). For each i and t, employment level satisfies the law of motion

Li,o,t+1 = ∑
o′

µi,o′o,tLi,o′,t. (C.5)

Producers’ Full Problem The intermediate goods are the same goods as the non-robot goods,

but are an input to the production function. The stock of non-robot capital is exogenously given

in each period for each country, and producers rent non-robot capital from the rental market. The

non-robot good production function is given by

YG
i,t = AG

i,t

{
αi,L

(
TO

i,t

) ϑ−1
ϑ
+ αi,M (Mi,t)

ϑ−1
ϑ + αi,K (Ki,t)

ϑ−1
ϑ

} ϑ
ϑ−1

,

where ϑ is the elasticity of substitution between occupation aggregates, intermediates goods, and

non-robot capital, and αi,L, αi,M, and αi,K ≡ 1− αi,L − αi,M are cost share parameters for the oc-

cupation aggregates, intermediates, and non-robot capital, respectively. Parameters satisfy ϑ > 0
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and αi,L, αi,M, αi,K > 0, and in the structural estimation, I set ϑ = 1 and compute each country’s

cost share parameters from the data. Intermediate goods are aggregated by

Mi,t =

[
∑

l
(Mli,t)

ε−1
ε

] ε
ε−1

, (C.6)

where ε > 0 is the elasticity of substitution. Since intermediate goods are traded across countries

and aggregated by equation (C.6), the elasticity parameter ε plays the role of the trade elasticity.

The static decision of the producers now includes the rental amount of non-robot capital and the

purchase of intermediate goods from each source country.

C.2 Relationship with Other Models of Automation

The model in Section 3 is general enough to nest models of automation in the previous literature.

In particular, I show how the production functions (5) and (6) imply to specifications in AR and

Humlum (2019). Throughout Section C.2, I fix country i and focus on steady states and thus drop

subscripts i and t since the discussion is about individual producer’s production function.

Relationship with the model in Acemoglu and Restrepo (2020, AR) Following AR that abstract

from occupations, I drop occupations by setting O = 1 in this paragraph. Therefore, the EoS

between occupations β plays no role, and θo = θ is a unique value. AR show that the unit cost

(hence the price given perfect competition) is written as

pAR ≡ 1
Ã

[
(1− ã)

w
AL + ã

cR

AR

]αL

r1−αL ,

for each sector and location (See AR, Appendix A1, equation A5). In this equation, cR is the steady

state marginal cost of robot capital defined in equation (C.33) and AL and AR represent per-unit

efficiency of labor and robots, respectively. In Lemma C.1 below, I prove that my model implies a

unit cost function that is strict generalization of pAR with proper modification to the shock terms

and parameter configuration. I begin with the modification that allows per-unit efficiency terms

in my model.

Definition C.1. For labor and robot per-unit efficiency terms AL > 0 and AR > 0 respectively,
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modified robot task space ã and TFP term Ã are

ã ≡
a
(

AL)θ−1

a (AL)
θ−1 + (1− a) (AR)

θ−1 , (C.7)

Ã ≡ A[
(1− ã) (AL)

θ−1 + ã (AR)
θ−1
] . (C.8)

Lemma C.1. Set the number of occupations O = 1. In the steady state,

pG =
1
Ã

[
(1− ã)

( w
AL

)1−θ
+ ã

(
cR

AR

)1−θ
] αL

1−θ (
pG
)αM

r1−αM−αL . (C.9)

Proof. Note that modified robot task space (C.7) and modified TFP (C.8) can be inverted to have

a ≡
ã
(

AR)θ−1

(1− ã) (AL)
θ−1 + ã (AR)

θ−1 , (C.10)

A ≡
[
(1− ã)

(
AL
)θ−1

+ ã
(

AR
)θ−1

]
Ã. (C.11)

Cost minimization problem with the production functions (5) and (6) and perfect competition

imply

pG =
1
A

(
PO
)αL

pαM r1−αL−αM ,

and

PO =
[
(1− a)w1−θ + a1−θ

] 1
1−θ

,

where PO is the unit cost of tasks performed by labor and robots. Substituting equations (C.10)

and (C.11) and rearranging, I have

pG =
1
Ã

(
P̃O
)αL

(
pG
)αM

r1−αL−αM ,

where P̃O is the cost of the tasks performed by labor and robots:

P̃O =

[
(1− ã)

( w
AL

)1−θ
+ a

(
cR

AR

)1−θ
] 1

1−θ

.
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Lemma C.1 immediately implies the following corollary that shows that the steady state mod-

ified unit cost (C.9) strictly nests the unit cost formulation of AR as a special case of Leontief

occupation aggregation.

Corollary C.1. Suppose αM = 0. Then as θ → 0, pG → pAR.

Relationship with the model in Humlum (2019) I show that production functions (5) and (6)

nest the production function used by Humlum (2019). Since the setting of Humlum (2019) does

not have non-robot capital, in this section, I simplify the notation for robot capital KR by dropping

the superscript and denote as K. For each firm in each period, Humlum (2019) specifies

QD = exp
[

ϕD
H + γD

HK
] [

∑
o

(
exp

[
ϕD

o + γD
o K
]) 1

β
(Lo)

β−1
β

] β
β−1

, (C.12)

where K = {0, 1} is a binary choice, ϕD
H, γD

H, ϕD
o and γD

o are parameters, and superscript D repre-

sents the discrete adoption problem of Humlum (2019). As normalization, suppose that

∑
o

exp
(

ϕD
o + γD

o K
)
= 1.

I will start from production function (5) and (6), place restrictions, and arrive at equation

(C.12). As a key observation, relative to the discrete choice of robot adoption in Humlum (2019),

the continuous choice of robot quantity in production function (6) allows significant flexibility. In

this paragraph, I assume away with intermediate inputs. This is because Humlum (2019) assumes

that intermediate inputs enter in an element of CES, while production function (5) implies that

intermediate inputs enter as an element of the Cobb-Douglas function.

Now, given my production functions (5) and (6), suppose producers follow the binary decision

rule defined below.

Definition C.2. A binary decision rule of a producer is that producers can choose between two

choices: adopting robots K = 1 or not K = 0. If they choose K = 1, they adopt robots at the same

unit as labor Ko = Lo ≥ 0 for all occupation o. If they choose K = 0, Ko = 0 for all o.
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Note that the binary decision rule is nested in the original choice problem from KR
o ≥ 0 for

each o. Set

AD
o

(
KR
)
≡


Ao

(
(1− ao)

1
θ + (ao)

1
θ

) θ
θ−1 (β−1)

if KR = Lo

Ao (1− ao)
1

θ−1 (β−1) if KR = 0
.

Then I have

Q =

[
∑

o

(
AD

o (Ko)
) 1

β
(Lo)

β−1
β

] β
β−1

.

To normalize, define

ÃD
o ≡

(
∑

o
AD

o (Ko)

) 1
β−1

and

aD
o

(
KR

o

)
≡ AD

o (Ko)

∑o′ AD
o′ (Ko′)

.

Then I have

Q = ÃD
o

[
∑

o

(
aD

o (Ko)
) 1

β
(Lo)

β−1
β

] β
β−1

. (C.13)

Finally, let

Ao,0 ≡
[
exp

(
ϕD

H + ϕD
o

)] θo−1
β−1

and

Ao,1 ≡
[(

exp
(

ϕD
H + ϕD

o + γD
H + γD

o

)) 1
θo

θo−1
β−1 −

(
exp

(
ϕD

H + ϕD
o

)) 1
θo

θo−1
β−1
]θo

.

and also let Ao and ao satisfy

Ao = (Ao,0 + Ao,1)
β−1
θo−1 (C.14)

and

ao =
Ao,1

Ao,0 + Ao,1
. (C.15)

Then one can substitute equations (C.14) and (C.15) to equation (C.13) and confirm that Q = QD.

Summarizing the discussion above, I have the result that my model can be restricted to produce

the production side of the model of Humlum (2019) as follows.

Lemma C.2. Suppose that (i) producers follow the binary decision rule in Definition C.2 and that (ii)

occupation productivity Ao and robot task space ao satisfy equations (C.14) and (C.15) for each o. Then
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Q = QD.

C.3 Equilibrium Characterization

To characterize the producer problem, I show the static optimization conditions and then the dy-

namic ones. For simplicity, I focus on the case with ϑ = 1, or Cobb-Douglas in the mix of occu-

pation aggregates, intermediates, and non-robot capital. To solve for the static problem of labor,

intermediate goods, and non-robot capital, consider the FOCs of equation (8)

pG
i,tαi,L

YG
i,t

TO
i,t

(
bi,o,t

TO
i,t

TO
i,o,t

) 1
β
(
(1− ao,t)

TO
i,o,t

Li,o,t

) 1
θo

= wi,o,t, (C.16)

where TO
i,t is the aggregated occupations TO

i,t ≡
[

∑o

(
TO

i,o,t

)(β−1)/β
]β/(β−1)

,

pG
i,tαi,M

YG
i,t

Mi,t

(
Mi,t

Mli,t

) 1
ε

= pG
li,t, (C.17)

and

pG
i,tαi,K

YG
i,t

Ki,t
= ri,t, (C.18)

where αi,K ≡ 1− αi,L − αi,M. Note also that by the envelope theorem,

∂πi,t

({
KR

i,o,t

})
∂KR

i,o,t
= pG

i,t
∂Yi,t

∂KR
i,o,t

= pG
i,t

αL
YG

i,t

TO
i,t

(
bi,o,t

TO
i,t

TO
i,o,t

) 1
β
(

ao,t
TO

i,o,t

KR
i,o,t

) 1
θ

 . (C.19)

Another static problem of producers is robot purchase. Define the “before-integration” robot

aggregate QR,BI
i,o,t ≡

[
∑l

(
QR

li,o,t

) εR−1
εR

] εR

εR−1

and the corresponding price index PR,BI
i,o,t . By the first

order condition with respect to QR
li,o,t for equation (10), I have pR

li,o,tQ
R
li,o,t =

(
pR

li,o,t

PR,BI
i,o,t

)1−εR

PR,BI
i,o,t QR,BI

i,o,t ,

and PR,BI
i,o,t QR,BI

i,o,t = αPR
i,o,tQ

R
i,o,t. Thus pR

li,o,tQ
R
li,o,t = α

(
pR

li,o,t

PR,BI
i,o,t

)1−εR

PR
i,o,tQ

R
i,o,t. Hence

QR
li,o,t = α

(
pR

li,o,t

)−εR (
PR,BI

i,o,t

)εR−1
PR

i,o,tQ
R
i,o,t.
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Writing PR
i,o,t =

(
PR,BI

i,o,t

)αR

(Pi,t)
1−αR

, I have

QR
li,o,t = α

(
pR

li,o,t

PR,BI
i,o,t

)−εR (
PR,BI

i,o,t

Pi,t

)−(1−αR)

QR
i,o,t.

Alternatively, one can define the robot price index by P̃R
i,o,t = α

1
εR
(

PR,BI
i,o,t

) εR−(1−αR)
εR

P
1−αR

εR
i,t and show

QR
li,o,t =

(
pR

li,o,t

P̃R
i,o,t

)−εR

QR
i,o,t, (C.20)

which is a standard gravity representation of robot trade.

To solve the dynamic problem, set up the (current-value) Lagrangian function for non-robot

goods producers

Li,t =
∞

∑
t=0

{(
1

1 + ι

)t
[

πi,t

({
KR

i,o,t

}
o

)
−∑

l,o

(
pR

li,o,t (1 + uli,t) QR
li,o,t + PG

i,t Iint
i,o,t + γPR

i,o,tQ
R
i,o,t

QR
i,o,t

KR
i,o,t

)]}
.

− λR
i,o,t

{
KR

i,o,t+1 − (1− δ)KR
i,o,t −QR

i,o,t

}
Taking the FOC with respect to the hardware from country l, QR

li,o,t, I have

pR
li,o,t (1 + uli,t) + 2γPR

i,o,t

(
QR

i,o,t

KR
i,o,t

)
∂QR

i,o,t

∂QR
li,o,t

= λR
i,o,t

∂QR
i,o,t

∂QR
li,o,t

. (C.21)

Taking the FOC with respect to the integration input Iint
i,o,t, I have

PG
i,t + 2γPR

i,o,t

(
QR

i,o,t

KR
i,o,t

)
∂QR

i,o,t

∂Iint
i,o,t

= λR
i,o,t

∂QR
i,o,t

∂Iint
i,o,t

, (C.22)

Taking the FOC with respect to KR
i,o,t+1, I have

(
1

1 + ι

)t+1
∂πi,t+1

({
KR

i,o,t+1

}
o

)
∂KR

i,o,t+1
+ γPR

i,o,t+1

(
QR

i,o,t+1

KR
i,o,t+1

)2

+ (1− δ) λR
i,o,t+1

−( 1
1 + ι

)t

λR
i,o,t = 0,

(C.23)
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and the transversality condition: for any j and o,

lim
t→∞

e−ιtλR
j,o,tK

R
j,o,t+1 = 0. (C.24)

Rearranging equation (C.23), I obtain the following Euler equation.

λR
i,o,t =

1
1 + ι

(1− δ) λR
i,o,t+1 +

∂

∂KR
i,o,t+1

πi,t+1

({
KR

i,o,t+1

})
+ γpR

i,o,t+1

(
QR

i,o,t+1

KR
i,o,t+1

)2
 . (C.25)

Turning to the demand for non-robot good, I will characterize bilateral intermediate good

trade demand and total expenditure. Write XG
j,t the total purchase quantity (but not value) of good

G in country j in period t. By equation (C.6), the bilateral trade demand is given by

pG
ij,tQ

G
ij,t =

(
pG

ij,t

PG
j,t

)1−ε

PG
j,tX

G
j,t, (C.26)

for any i, j, and t. In this equation, PG
j,tX

G
j,t is the total expenditures on non-robot goods. The total

expenditure is the sum of final consumption Ij,t, payment to intermediate goods αM pG
j,tY

G
j,t, input

to robot productions ∑o PG
j,t IR

j,o,t = ∑o,k pR
jk,o,tQ

R
jk,o,t, and payment to robot integration ∑o PG

j,t Iint
j,o,t =(

1− αR)∑o PR
j,o,tQ

R
j,o,t. Hence

PG
j,tX

G
j,t = Ij,t + αM pG

j,tY
G
j,t + ∑

o,k
pR

jk,o,tQ
R
jk,o,t +

(
1− αR

)
∑

o
PR

j,o,tQ
R
j,o,t.

For country j and period t, by substituting into income Ij,t the period cash flow of non-robot good

producer that satisfies

Πj,t ≡ πj,t

({
KR

j,o,t

}
o

)
−∑

i,o

(
pR

ij,o,t
(
1 + uij,t

)
QR

ij,o,t + ∑
o

PG
j,t Iint

j,o,t + γPR
j,o,tQ

R
j,o,t

(
QR

j,o,t

KR
j,o,t

))

and robot tax revenue Tj,t = ∑i,o uij,t pR
ij,o,tQ

R
ij,o,t, I have

Ij,t = (1− αM)∑
k

pG
jk,tQ

G
jk,t −

(
∑
i,o

pR
ij,o,tQ

R
ij,o,t +

(
1− αR

)
∑

o
PR

j,o,tQ
R
j,o,t

)
, (C.27)
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or in terms of variables in the definition of equilibrium,

Ij,t = (1− αM)∑
k

pG
jk,tQ

G
jk,t −

1
αR ∑

i,o
pR

ij,o,tQ
R
ij,o,t.

Hence, the total expenditure measured in terms of the production side as opposed to income side

is

PG
j,tX

G
j,t = ∑

k
pG

jk,tQ
G
jk,t −∑

i,o
pR

ij,o,tQ
R
ij,o,t

(
1 + γ

QR
ij,o,t

KR
j,o,t

)
. (C.28)

Note that this equation embeds the balanced-trade condition. By substituting equation (C.28) into

equation (C.26), I have

pG
ij,tQ

G
ij,t =

(
pG

ij,t

PG
j,t

)1−εG (
∑

k
pG

jk,tQ
G
jk,t + ∑

k,o
pR

jk,o,tQ
R
jk,o,t −∑

i,o
pR

ij,o,tQ
R
ij,o,t

)
. (C.29)

The good and robot-o market-clearing conditions are given by,

YR
i,t = ∑

j
QG

ij,tτ
G
ij,t, (C.30)

for all i and t, and

pR
i,o,t =

PG
i,t

AR
i,o,t

(C.31)

for all i, o, and t, respectively.

Conditional on state variables St =
{

KR
t , λR

t , Lt, V t

}
, equations (C.3), (C.16), (C.21), (C.29),

(C.30), and (C.31) characterize the temporary equilibrium
{

pG
t , pR

t , wt, QG
t , QR

t , Lt

}
. In addition,

conditional on initial conditions
{

KR
0 , L0

}
, equations (9), (C.25), and (C.24) characterize the se-

quential equilibrium.

Finally, the steady state conditions are given by imposing the time-invariance condition to

equations (9) and (C.25):

QR
i,o = δKR

i,o, (C.32)

∂

∂KR
i,o

πi

({
KR

i,o

})
= (ι + δ) λR

i,o −∑
l

γpR
li,o

(
QR

li,o

KR
i,o

)2

≡ cR
i,o. (C.33)

Note that equation (C.33) can be interpreted as the flow marginal profit of capital must be equal-
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ized to the marginal cost term. Thus I define the steady state marginal cost of robot capital cR
i,o

from the right-hand side of equation (C.33). Note that if there is no adjustment cost γ = 0, the

steady state Euler equation (C.33) implies

∂

∂KR
i,o

πi

({
KR

i,o

})
= cR

i,o = (ι + δ) λR
i,o,

which states that the marginal profit of capital is the user cost of robots in the steady state (Hall

and Jorgenson 1967).

C.4 On the Choice of the Steady-State Matrix in Equation (21)

In equation (21), I use the steady-state matrix E instead of the transitional dynamics matrix Ft for

a computational reason. Since I have annual observation for occupational robot costs, it is poten-

tially possible to leverage this rich variation for the structural estimation, which may permit me

to estimate the EoS θo at a narrower occupation group level. However, the bottleneck is the com-

putational burden to compute the dynamic solution matrix Ft. Specifically, dynamic substitution

matrix Fy
t+1 in equation (16) is based on the conditions of Blanchard and Kahn (1980). This requires

computing the eigenspace, which is computationally hard since the matrix Fy
t+1 is not sparse. In

contrast, the estimation method in Appendix D.2 does not involve such computation, but only

requires computing the steady-state solution matrix E. Then I only need to invert steady-state

substitution matrix Ey, which is feasible given the sparse structure of Ey.

D Online Appendix for Estimation and Simulation

D.1 Robot Trade Elasticity

To estimate robot trade elasticity εR, I apply and extend the trilateral method of Caliendo and

Parro (2015). Namely, decompose the robot trade cost τR
li,t into ln τR

li,t = ln τR,T
li,t + ln τR,D

li,t , where

τR,T
li,t is tariff on robots taken from the UNCTAD-TRAINS database and τR,D

li,t is asymmetric non-

tariff trade cost. The latter term is assumed to be ln τR,D
li,t = ln τR,D,S

li,t + ln τR,D,O
l,t + ln τR,D,D

i,t +

ln τR,D,E
li,t , where τR,D,S

li,t captures symmetric bilateral trade costs such as distance, common border,
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language, and FTA belonging status and satisfies τR,D,S
li,t = τR,D,S

il,t , τR,D,O
l,t and τR,D,D

i,t are the origin

and destination fixed effects such as non-tariff barriers respectively, and τR,D,E
li,t is the random error

that is orthogonal to tariffs. By equation (C.20), I have

ln

(
XR

li,tX
R
ij,tX

R
jl,t

XR
lj,tX

R
ji,tX

R
il,t

)
=
(

1− εR
)

ln

(
τR,T

li,t τR,T
ij,t τR,T

jl,t

τR,T
lj,t τR,T

ji,t τR,T
il,t

)
+ elij,t, (D.1)

where XR
li,t is the bilateral sales of robots from l to i in year t and elij,t ≡ ln τR,D,E

li,t + ln τR,D,E
ij,t +

ln τR,D,E
jl,t − ln τR,D,E

lj,t − ln τR,D,E
ji,t − ln τR,D,E

il,t . The benefit of this approach is that it does not require

symmetry for non-tariff trade cost τR,D
li , but only requires the orthogonality for the asymmetric

component of the trade cost. My method also extends Caliendo and Parro (2015) in using the

time-series variation as well as trilateral country-level variation to complement the relatively small

number of observations in robot trade data.

When implementing regression of equation (D.1), I further consider controlling for two sepa-

rate sets of fixed effects. The first set is the unilateral fixed effect indicating if a country is included

in the trilateral pair of countries, and the second set is the bilateral fixed effect for the twin of

countries is included in the trilateral pair. These fixed effects are relevant in my setting as a few

number of countries export robots, and controlling for these exporters’ unobserved characteristics

is critical.

Table D.1 shows the result of regression of equation (D.1). The first two columns show the

result for the HS code 847950 (Industrial robots for multiple uses, the definition of robots used

in Humlum 2019), and the last two columns HS code 8479 (Machines and mechanical appliances

having individual functions, not specified or included elsewhere in this chapter). The first and

third columns control for the unilateral fixed effect, and the second and fourth the bilateral fixed

effect. The implied trade elasticity of robots εR is fairly tightly estimated and ranges between 1.13-

1.34. Given these estimation results, I use εR = 1.2 in the estimation and counterfactuals.

To assess the estimation result, note that Caliendo and Parro (2015) show in Table 1 that the

regression coefficient of equation (D.1) is 1.52, with the standard error of 1.81, for “Machinery

n.e.c”, which roughly corresponds to HS 84. Therefore, my estimate for industrial robots falls in

the one-standard-deviation range of their estimate for a broader category of goods.

Note that the average trade elasticity across sectors is estimated significantly higher than these
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Table D.1: Coefficient of equation (D.1)

(1) (2) (3) (4)
HS 847950 HS 847950 HS 8479 HS 8479

Tariff -0.272 -0.236 -0.146 -0.157
(0.0718) (0.0807) (0.0127) (0.0131)

Constant -0.917 -0.893 -1.170 -1.170
(0.0415) (0.0381) (0.00905) (0.00853)

FEs h-i-j-t ht-it-jt h-i-j-t ht-it-jt
N 4610 4521 88520 88441
r2 0.494 0.662 0.602 0.658

Note: The author’s calculation based on BACI data from 1996 to 2018 and equation (D.1). The first two columns show the result for the
HS code 847950 (Industrial robots for multiple uses), while the last two columns HS code 8479 (Machines and mechanical appliances
having individual functions, not specified or included elsewhere in this chapter). The first and third columns control the unilateral
fixed effect, while the second and fourth the bilateral fixed effect. See the text for the detail.

values, such as 4 in Simonovska and Waugh (2014). The low trade elasticity for robots εR is intu-

itive given robots are highly heterogeneous and hardly substitutable. This low elasticity implies

small gains from robot taxes, with the robot tax incidence almost on the US (robot buyer) side

rather than the robot-selling country.

D.2 Estimator Detail

Using Assumption 1, I develop a consistent and asymptotically efficient two-step estimator. Specif-

ically, I follow the method developed by Adao, Arkolakis, and Esposito (2019), who extend the

estimator of Newey and McFadden (1994) to the general equilibrium environment and define

the model-implied optimal instrumental variable (MOIV). The key idea is that the optimal GMM

estimator is based on the instrumental variable that depends on unknown structural parameters.

Therefore, the two-step estimator solves this unknown-dependent problem and achieves desirable

properties of consistency and asymptotic efficiency. As a result, I define IVs Zo,n where n = 0, 1 as

follows:

Zo,n ≡ Ho,n

(
ψJ
)
= E

[
∇Θνo (Θn) |ψJ

]
E
[
νo (Θn) (νo (Θn))

> |ψJ
]−1

. (D.2)

For the formal statement, I need the following additional assumption.

Assumption D.1. (i) A function of Θ̃, E
[

Ho

(
ψJ

t1

)
νo

(
Θ̃
)]
, 0 for any Θ̃ , Θ. (ii) θ ≤ θo ≤ θ

for any o, β ≤ β ≤ β, γ ≤ γ ≤ γ, and φ ≤ φ ≤ φ for some positive values θ, β, γ, φ, θ, β, γ, φ. (iii)
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Figure D.1: Correlation between Japan Robot Shock ψJ
o and Automation Shock âobs

o

Note: The author’s calculation based on JARA, O*NET, and US Census/ACS. The x-axis shows the Japan robot shock, and is taken
from the regression of equation (2). The y-axis shows the implied automation shock, and is backed out from equation (20) with the
estimated parameters in Table 2. Each circle is 4-digit occupation and dashed line is the fitted line.

E
[
supΘ ‖ Ho
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t1

)
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(
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‖
]
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)
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(
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‖2
]
< ∞ (v) E

[
supΘ ‖ Ho

(
ψJ

t1

)
∇

Θ̃
νo

(
Θ̃
)
‖
]
<

∞.

Under Assumptions 1 and D.1, Adao, Arkolakis, and Esposito (2019) shows that the estimator

Θ2 obtained in the following procedure is consistent, asymptotically normal, and optimal: Step

1: With a guess Θ0, estimate Θ1 = ΘH0 using Zo,0 defined in equation (D.2). Step 2: With Θ1,

estimate Θ2 by Θ2 = ΘH1 using Zo,1 defined in equation (D.2).

D.3 The Japan Robot Shock and The Implied Automation Shock

In turn, Figure D.1 shows a further detailed scatter plot between the two shocks, delivering a

mild negative relationship. This negative correlation is consistent with the example of robotic

innovations in Appendix B.1.

D.4 Details in Counterfactual Analysis

Simulation Method The simulation for the counterfactual analysis comprises three steps. First,

I back out the observed shocks from the estimated model for each year between 1992 and 2007.

Namely, I obtain the efficiency increase of Japanese robots ÂR
2,o,t using equation (18). With the

point estimates in Table 2, the implied automation shock âimp
o,t using (20). To back out the efficiency
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Figure D.2: The Effect on Occupational Wages by Sources of Shocks

(a) Both Shocks (b) Automation Shock (c) Japan Robot Shock

Note: The left panel shows the annualized occupational wage growth rates for each wage decile, predicted by the first-order steady-
state solution of the estimated model given in equation (15), for each of ten deciles of the occupational wage distribution in 1990, and
is equivalent to Figure 4b. The center and right panels distinguish the effect of the automation shock (center) and the Japan robot
shock (right).

shock of robots in the other countries, I assume that ÂR
i,o,t = ÂR

i,t for i = 1, 3. Then by the robot

trade prices pR
ij,t from BACI, I fit fixed effect regression ∆ ln

(
pR

ij,t

)
= ψ̃D

j,t + ψ̃C
i,t + ẽij,t, and use

ÂR
i,t = −ψ̃C

i,t1
. The idea to back out the negative efficiency shock ψ̃C

i,t1
is similar to the fixed-effect

regression in Section 2, but without the occupational variation that is not observed in BACI data.

Second, applying the backed-out shocks ÂR
i,o,t and âobs

o,t to the first-order solution of the GE in

equation (17), I obtain the prediction of changes in endogenous variables to these shocks to the

first-order. Finally, applying the predicted changes to the initial data in t0 = 1992, I obtain the

predicted level of endogenous variables.

The Effect of Robotization and the Sources of Shocks In Figure 4b, I show the effect of two

robotization shocks: the automation shock â and the Japan robot shock Â2. Although both are

relevant shocks to the robotics technology during the sample period, the result is a mixture of

these two effects, making it hard to assess the contribution of each shock. To address this concern,

Figure D.2 shows the decomposition of the main exercise. The left panel shows the same result

as Figure 4b, while the center panel shows the predicted wage changes with only the automation

shock and the right only the Japan robot shock. Notably, it is the automation shock that reduces

the labor demand and, thus, the wage across many occupations. By contrast, the Japan robot shock

reduces the price of robots and increases the marginal product of labor, and thus the occupational

wages are increased.

78



D.5 Robot Tax and Workers’ Welfare

To examine how the robot tax affects workers in different occupations, I define the equivalent

variation (EV) as follows. Consider the US unilateral (not inducing a reaction in other countries),

unexpected, and permanent tax on robot purchases as in Section 5.3. Write C′i,o,t as the consump-

tion stream under the robotized economy with tax and Ci,o,t as that under the robotized but not

taxed economy, where the robotization shock is backed out in Section 4.4. For each country i and

occupation o, EVi,o is implicitly defined as

∞

∑
t=t0

(
1

1 + ι

)t

ln
([

C′i,o,t
])

=
∞

∑
t=t0

(
1

1 + ι

)t

ln (Ci,o,t [1 + EVi,o]) . (D.3)

Namely, the EV is the fraction of the occupation-specific subsidy that would make the present

discounted value (PDV) of the utility in the robotized and taxed economy equal to the PDV of

the utility if the occupation-specific subsidy were exogenously given every period in non-taxed

economy. Workers in country i and occupation o prefer the economy with tax if and only if EVi,o

is positive.

Figure D.3a shows this occupation-specific EV as a function of the tax rate. The far-left side

of the figure is the case of zero robot tax, thus a case of only the robotization shock. Consistent

with the occupational wage effects (cf. Figure 5a), workers in production and transportation oc-

cupations lose significantly due to robotization. In contrast, other workers are roughly indifferent

between the robotized world and the non-robotized initial steady state or slightly prefer the former

world. Going right through the figure, the production and transportation workers’ EV improves

as the robot tax reduces adoption of robots that substitute their jobs. The EV of production work-

ers turns positive when the tax rate is around 6%, and that of transportation workers is positive

when the rate is about 7%. However, these tax rates are too high and would make EVs in other

occupations negative. This is because, with such a high tax rate, robot accumulation in production

and transportation occupations was significantly reduced, which adversely affect labor demand

in other occupations.

To study if the reallocation policy by robot tax may work, I also compute the equivalent varia-

tion in terms of monetary value aggregated by occupation groups (total EV) and compare it with

the robot tax revenue, both as a function of robot tax. Figure D.3b shows the result. One can con-
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Figure D.3: Robot Tax and Workers’ Welfare

(a) Occupational Equivalent Variation (b) Total EV and Revenue

Note: The left panel shows the US workers’ equivalent variation defined in equation (D.3) as a function of the US robot tax rate. The
right panel shows monetary values of equivalent variations aggregated across workers and robot tax revenue as a function of the
robot tax rate, measured in 1990 million USD.

firm that the marginal robot tax revenue is far from enough to compensate for workers’ loss that

concentrates on production and transportation workers, at the initial steady state with zero robot

tax rate. The robot tax revenue is negligible at this margin compared with the workers’ loss due

to robotization. It is true that as the robot tax rate increases, the total EV rises: When the rate is as

large as 2-3%, the sum of the total EV and the robot tax revenue is positive.
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